1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*
 * Copyright (c) 2018 Isaac van Bakel
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 * this software and associated documentation files (the "Software"), to deal in
 * the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 * the Software, and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

/// A wrapper around an existing iterator to extend it with backtracking functionality
pub struct BacktrackingIterator<I> where I: Iterator {
  iterator: I,
  backtracking_vec: Vec<I::Item>,
  state: BacktrackingState,
}

use crate::BacktrackingState::*;

enum BacktrackingState {
  /// There may be some values in the history, but we're taking values off the iterator
  Progressing,
  /// We've been asked to backtrack, so we've started taking values from the history instead
  /// The `position` field tracks where we are in the history, with 0 being at the start.
  ///
  /// A `BacktrackingIterator` may be in this state with `position` as an invalid index into
  /// the history - in this case, the next call to `next()` will restore it to the `Progressing`
  /// state and yield a value from the internal `Iterator`.
  Backtracking { position: usize },
}

impl<I> BacktrackingIterator<I> where I:Iterator {
  /// Create a `BacktrackingIterator` from an existing iterator.
  pub fn new(iterator: I) -> Self {
    BacktrackingIterator {
      iterator,
      backtracking_vec: vec![],
      state: Progressing,
    }
  }

  /// Give the current position in the history, as a usize.
  pub fn history_position(&self) -> usize {
    match self.state {
        Progressing => self.backtracking_vec.len(),
        Backtracking { position } => position,
    }
  }

  /// Start the iterator again from all the elements in the current history
  /// The iterator will repeat every element which was emitted since the last
  /// call to `forget()`.
  ///
  /// ```
  /// extern crate backtracking_iterator;
  /// use backtracking_iterator::BacktrackingIterator;
  ///
  /// let v = vec![1_u8, 2_u8];
  /// let mut bt = BacktrackingIterator::new(v.into_iter());
  /// bt.next();
  /// bt.backtrack();
  /// assert!(bt.next().unwrap() == 1_u8);
  /// ```
  pub fn backtrack(&mut self) {
    self.state = Backtracking { position: 0_usize };
  }

  /// Clear the current history.
  /// ```
  /// extern crate backtracking_iterator;
  /// use backtracking_iterator::BacktrackingIterator;
  ///
  /// let v = vec![1_u8, 2_u8];
  /// let mut bt = BacktrackingIterator::new(v.into_iter());
  /// bt.next();
  ///
  /// //Before we call this, 1_u8 is in the history
  /// bt.forget();
  ///
  /// bt.backtrack();
  /// assert!(bt.next().unwrap() == 2_u8);
  /// ```
  pub fn forget(&mut self) {
    self.backtracking_vec.clear();
  }

  /// Produce an iterator which goes back over the current history in reverse,
  /// and yields references to items in the history.
  /// ```
  /// extern crate backtracking_iterator;
  /// use backtracking_iterator::BacktrackingIterator;
  ///
  /// let v = vec![1_u8, 2_u8];
  /// let mut bt = BacktrackingIterator::new(v.into_iter());
  /// bt.next();
  ///
  /// let mut wb = bt.walk_back();
  ///
  /// assert!(wb.next().unwrap() == &1_u8);
  /// ```
  pub fn walk_back(&self) -> Walkback<I> {
    Walkback::new(self)
  }

  /// Restart this iterator, backtracking from the given position in the backwalk.
  /// Has no expected behaviour if you don't do the sensible thing i.e. get this `usize`
  /// from a `Walkback`.
  /// ```
  /// extern crate backtracking_iterator;
  /// use backtracking_iterator::BacktrackingIterator;
  ///
  /// let v = vec![1_u8, 2_u8, 3_u8];
  /// let mut bt = BacktrackingIterator::new(v.into_iter());
  /// bt.next(); // 1_u8
  /// bt.next(); // 2_u8
  /// let wb_pos = {
  ///   let mut wb = bt.walk_back();
  ///   assert!(wb.next().unwrap() == &2_u8);
  ///   wb.history_position()
  /// };
  /// 
  /// bt.go_from(wb_pos);
  /// assert!(bt.next().unwrap() == 2_u8);
  pub fn go_from(&mut self, start_from: usize) {
    self.state = Backtracking { position: start_from };
  }
}

/// In order to be able to backtrack, the iterator values must be `Clone`able
/// The reason for this is simple - the value will both be owned by the caller,
/// and stored in the history to be repeated later.
impl<I> Iterator for BacktrackingIterator<I> where I: Iterator, I::Item: Clone {
  type Item = I::Item;

  fn next(&mut self) -> Option<Self::Item> {
    use crate::{Backtracking, Progressing};
    match self.state {
      Progressing => {
        if let Some(val) = self.iterator.next() {
          self.backtracking_vec.push(val.clone());
          Some(val)
        } else {
          None
        }
      },
      Backtracking { position } => {
        if position >= self.backtracking_vec.len() {
          self.state = Progressing;
          self.next()
        } else {
          let backtracked_value = self.backtracking_vec[position].clone();
          let new_position = position + 1;
          self.state = Backtracking { position: new_position };
          Some(backtracked_value)
        }
      },
    }
  }
}

/// A backwalk through a `BacktrackingIterator`'s history. Yields references
/// to items in the history, and can be used to walk back to a desired point.
/// The current position is before the most-recently-yielded element. To restart
/// a `BacktrackingIterator` at the current position of the backwalk, use the
/// `history_position()` method.
pub struct Walkback<'history, I> where I: Iterator {
  backtracker: &'history BacktrackingIterator<I>,
  reverse_position: usize,
}

impl<'history, I> Walkback<'history, I> where I: Iterator {
  fn new(backtracker: &'history BacktrackingIterator<I>) -> Self {
    let history_len = backtracker.backtracking_vec.len();
    Walkback {
      backtracker: &backtracker,
      reverse_position: history_len,
    }
  }

  pub fn history_position(&self) -> usize {
    self.reverse_position
  }
}

impl<'history, I> Iterator for Walkback<'history, I> where I: Iterator {
  type Item = &'history I::Item;

  fn next(&mut self) -> Option<Self::Item> {
    if self.reverse_position == 0 {
      None
    } else {
      let new_position = self.reverse_position - 1_usize;
      let val = &self.backtracker.backtracking_vec[new_position];
      self.reverse_position = new_position;
      Some(val)
    }
  }
}

#[cfg(test)]
mod tests {
  #[test]
  fn basic_test() {
    use crate::{BacktrackingIterator};

    let num_vec = vec![1_u8, 2, 3, 4, 5, 6];
    let vec_iter = num_vec.into_iter();
    let mut bt_iter = BacktrackingIterator::new(vec_iter);
    assert!(bt_iter.next().unwrap() == 1_u8);
    assert!(bt_iter.next().unwrap() == 2_u8);

    bt_iter.backtrack();
    assert!(bt_iter.next().unwrap() == 1_u8);
    assert!(bt_iter.next().unwrap() == 2_u8);

    bt_iter.forget();
    bt_iter.backtrack();
    assert!(bt_iter.next().unwrap() == 3_u8);
    assert!(bt_iter.next().unwrap() == 4_u8);
    assert!(bt_iter.next().unwrap() == 5_u8);
    assert!(bt_iter.next().unwrap() == 6_u8);
    assert!(!bt_iter.next().is_some());

    bt_iter.backtrack();
    assert!(bt_iter.next().unwrap() == 3_u8);
  }

  #[test]
  fn backwalk_test() {
    use crate::{BacktrackingIterator};
    let num_vec = vec![1_u8, 2, 3, 4, 5, 6];
    let vec_iter = num_vec.into_iter();
    let mut bt_iter = BacktrackingIterator::new(vec_iter);

    for _ in 1..=6 {
        bt_iter.next();
    }

    let mut wb = bt_iter.walk_back();
    for i in 1_u8..=6 {
      assert!(wb.next().unwrap() == &(7 - i));
    }
  }
}