1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
//! Data structures used to setup and share data with eBPF programs.
//!
//! The eBPF platform provides data structures - maps in eBPF speak - that are
//! used to setup and share data with eBPF programs. When you call
//! [`Bpf::load_file`](crate::Bpf::load_file) or
//! [`Bpf::load`](crate::Bpf::load), all the maps defined in the eBPF code get
//! initialized and can then be accessed using [`Bpf::map`](crate::Bpf::map) and
//! [`Bpf::map_mut`](crate::Bpf::map_mut).
//!
//! # Typed maps
//!
//! The eBPF API includes many map types each supporting different operations.
//! [`Bpf::map`](crate::Bpf::map) and [`Bpf::map_mut`](crate::Bpf::map_mut) always return the
//! opaque [`MapRef`] and [`MapRefMut`] types respectively. Those two types can be converted to
//! *typed maps* using the [`TryFrom`](std::convert::TryFrom) trait. For example:
//!
//! ```no_run
//! # let mut bpf = aya::Bpf::load(&[], None)?;
//! use std::convert::{TryFrom, TryInto};
//! use aya::maps::SockMap;
//! use aya::programs::SkMsg;
//!
//! let intercept_egress = SockMap::try_from(bpf.map_mut("INTERCEPT_EGRESS")?)?;
//! let prog: &mut SkMsg = bpf.program_mut("intercept_egress_packet")?.try_into()?;
//! prog.load()?;
//! prog.attach(&intercept_egress)?;
//! # Ok::<(), aya::BpfError>(())
//! ```
//!
//! # Maps and `Pod` values
//!
//! Many map operations copy data from kernel space to user space and vice
//! versa. Because of that, all map values must be plain old data and therefore
//! implement the [Pod] trait.
use std::{
    convert::TryFrom, ffi::CString, io, marker::PhantomData, mem, ops::Deref, os::unix::io::RawFd,
    ptr,
};
use thiserror::Error;

use crate::{
    generated::bpf_map_type,
    obj,
    sys::{bpf_create_map, bpf_map_get_next_key},
    util::nr_cpus,
    Pod,
};

mod map_lock;

pub mod array;
pub mod hash_map;
pub mod perf;
pub mod queue;
pub mod sock;
pub mod stack;
pub mod stack_trace;

pub use array::{Array, PerCpuArray, ProgramArray};
pub use hash_map::{HashMap, PerCpuHashMap};
pub use map_lock::*;
pub use perf::PerfEventArray;
pub use queue::Queue;
pub use sock::{SockHash, SockMap};
pub use stack::Stack;
pub use stack_trace::StackTraceMap;
#[derive(Error, Debug)]
pub enum MapError {
    #[error("map `{name}` not found ")]
    MapNotFound { name: String },

    #[error("invalid map type {map_type}")]
    InvalidMapType { map_type: u32 },

    #[error("invalid map name `{name}`")]
    InvalidName { name: String },

    #[error("the map `{name}` has not been created")]
    NotCreated { name: String },

    #[error("the map `{name}` has already been created")]
    AlreadyCreated { name: String },

    #[error("failed to create map `{name}`: {code}")]
    CreateError {
        name: String,
        code: i64,
        io_error: io::Error,
    },

    #[error("invalid key size {size}, expected {expected}")]
    InvalidKeySize { size: usize, expected: usize },

    #[error("invalid value size {size}, expected {expected}")]
    InvalidValueSize { size: usize, expected: usize },

    #[error("the index is {index} but `max_entries` is {max_entries}")]
    OutOfBounds { index: u32, max_entries: u32 },

    #[error("key not found")]
    KeyNotFound,

    #[error("element not found")]
    ElementNotFound,

    #[error("the program is not loaded")]
    ProgramNotLoaded,

    #[error("the `{call}` syscall failed with code {code} io_error {io_error}")]
    SyscallError {
        call: String,
        code: i64,
        io_error: io::Error,
    },

    #[error("map `{name}` is borrowed mutably")]
    BorrowError { name: String },

    #[error("map `{name}` is already borrowed")]
    BorrowMutError { name: String },
}

/// A generic handle to a BPF map.
///
/// You should never need to use this unless you're implementing a new map type.
#[derive(Debug)]
pub struct Map {
    pub(crate) obj: obj::Map,
    pub(crate) fd: Option<RawFd>,
}

impl Map {
    pub fn create(&mut self) -> Result<RawFd, MapError> {
        let name = self.obj.name.clone();
        if self.fd.is_some() {
            return Err(MapError::AlreadyCreated { name: name.clone() });
        }

        let c_name =
            CString::new(name.clone()).map_err(|_| MapError::InvalidName { name: name.clone() })?;

        let fd = bpf_create_map(&c_name, &self.obj.def).map_err(|(code, io_error)| {
            MapError::CreateError {
                name,
                code,
                io_error,
            }
        })? as RawFd;

        self.fd = Some(fd);

        Ok(fd)
    }

    pub fn name(&self) -> &str {
        &self.obj.name
    }

    pub fn map_type(&self) -> Result<bpf_map_type, MapError> {
        bpf_map_type::try_from(self.obj.def.map_type)
    }

    pub(crate) fn fd_or_err(&self) -> Result<RawFd, MapError> {
        self.fd.ok_or_else(|| MapError::NotCreated {
            name: self.obj.name.clone(),
        })
    }
}

pub(crate) trait IterableMap<K: Pod, V> {
    fn map(&self) -> &Map;

    unsafe fn get(&self, key: &K) -> Result<V, MapError>;
}

/// Iterator returned by `map.keys()`.
pub struct MapKeys<'coll, K: Pod> {
    map: &'coll Map,
    err: bool,
    key: Option<K>,
}

impl<'coll, K: Pod> MapKeys<'coll, K> {
    fn new(map: &'coll Map) -> MapKeys<'coll, K> {
        MapKeys {
            map,
            err: false,
            key: None,
        }
    }
}

impl<K: Pod> Iterator for MapKeys<'_, K> {
    type Item = Result<K, MapError>;

    fn next(&mut self) -> Option<Result<K, MapError>> {
        if self.err {
            return None;
        }

        let fd = match self.map.fd_or_err() {
            Ok(fd) => fd,
            Err(e) => {
                self.err = true;
                return Some(Err(e));
            }
        };

        match bpf_map_get_next_key(fd, self.key.as_ref()) {
            Ok(Some(key)) => {
                self.key = Some(key);
                return Some(Ok(key));
            }
            Ok(None) => {
                self.key = None;
                return None;
            }
            Err((code, io_error)) => {
                self.err = true;
                return Some(Err(MapError::SyscallError {
                    call: "bpf_map_get_next_key".to_owned(),
                    code,
                    io_error,
                }));
            }
        }
    }
}

/// Iterator returned by `map.iter()`.
pub struct MapIter<'coll, K: Pod, V> {
    keys: MapKeys<'coll, K>,
    map: &'coll dyn IterableMap<K, V>,
    _v: PhantomData<V>,
}

impl<'coll, K: Pod, V> MapIter<'coll, K, V> {
    fn new(map: &'coll dyn IterableMap<K, V>) -> MapIter<'coll, K, V> {
        MapIter {
            keys: MapKeys::new(map.map()),
            map,
            _v: PhantomData,
        }
    }
}

impl<K: Pod, V> Iterator for MapIter<'_, K, V> {
    type Item = Result<(K, V), MapError>;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            match self.keys.next() {
                Some(Ok(key)) => {
                    let value = unsafe { self.map.get(&key) };
                    match value {
                        Ok(value) => return Some(Ok((key, value))),
                        Err(MapError::KeyNotFound) => continue,
                        Err(e) => return Some(Err(e)),
                    }
                }
                Some(Err(e)) => return Some(Err(e)),
                None => return None,
            }
        }
    }
}

impl TryFrom<u32> for bpf_map_type {
    type Error = MapError;

    fn try_from(map_type: u32) -> Result<Self, Self::Error> {
        use bpf_map_type::*;
        Ok(match map_type {
            x if x == BPF_MAP_TYPE_UNSPEC as u32 => BPF_MAP_TYPE_UNSPEC,
            x if x == BPF_MAP_TYPE_HASH as u32 => BPF_MAP_TYPE_HASH,
            x if x == BPF_MAP_TYPE_ARRAY as u32 => BPF_MAP_TYPE_ARRAY,
            x if x == BPF_MAP_TYPE_PROG_ARRAY as u32 => BPF_MAP_TYPE_PROG_ARRAY,
            x if x == BPF_MAP_TYPE_PERF_EVENT_ARRAY as u32 => BPF_MAP_TYPE_PERF_EVENT_ARRAY,
            x if x == BPF_MAP_TYPE_PERCPU_HASH as u32 => BPF_MAP_TYPE_PERCPU_HASH,
            x if x == BPF_MAP_TYPE_PERCPU_ARRAY as u32 => BPF_MAP_TYPE_PERCPU_ARRAY,
            x if x == BPF_MAP_TYPE_STACK_TRACE as u32 => BPF_MAP_TYPE_STACK_TRACE,
            x if x == BPF_MAP_TYPE_CGROUP_ARRAY as u32 => BPF_MAP_TYPE_CGROUP_ARRAY,
            x if x == BPF_MAP_TYPE_LRU_HASH as u32 => BPF_MAP_TYPE_LRU_HASH,
            x if x == BPF_MAP_TYPE_LRU_PERCPU_HASH as u32 => BPF_MAP_TYPE_LRU_PERCPU_HASH,
            x if x == BPF_MAP_TYPE_LPM_TRIE as u32 => BPF_MAP_TYPE_LPM_TRIE,
            x if x == BPF_MAP_TYPE_ARRAY_OF_MAPS as u32 => BPF_MAP_TYPE_ARRAY_OF_MAPS,
            x if x == BPF_MAP_TYPE_HASH_OF_MAPS as u32 => BPF_MAP_TYPE_HASH_OF_MAPS,
            x if x == BPF_MAP_TYPE_DEVMAP as u32 => BPF_MAP_TYPE_DEVMAP,
            x if x == BPF_MAP_TYPE_SOCKMAP as u32 => BPF_MAP_TYPE_SOCKMAP,
            x if x == BPF_MAP_TYPE_CPUMAP as u32 => BPF_MAP_TYPE_CPUMAP,
            x if x == BPF_MAP_TYPE_XSKMAP as u32 => BPF_MAP_TYPE_XSKMAP,
            x if x == BPF_MAP_TYPE_SOCKHASH as u32 => BPF_MAP_TYPE_SOCKHASH,
            x if x == BPF_MAP_TYPE_CGROUP_STORAGE as u32 => BPF_MAP_TYPE_CGROUP_STORAGE,
            x if x == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY as u32 => BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
            x if x == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE as u32 => {
                BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE
            }
            x if x == BPF_MAP_TYPE_QUEUE as u32 => BPF_MAP_TYPE_QUEUE,
            x if x == BPF_MAP_TYPE_STACK as u32 => BPF_MAP_TYPE_STACK,
            x if x == BPF_MAP_TYPE_SK_STORAGE as u32 => BPF_MAP_TYPE_SK_STORAGE,
            x if x == BPF_MAP_TYPE_DEVMAP_HASH as u32 => BPF_MAP_TYPE_DEVMAP_HASH,
            x if x == BPF_MAP_TYPE_STRUCT_OPS as u32 => BPF_MAP_TYPE_STRUCT_OPS,
            x if x == BPF_MAP_TYPE_RINGBUF as u32 => BPF_MAP_TYPE_RINGBUF,
            x if x == BPF_MAP_TYPE_INODE_STORAGE as u32 => BPF_MAP_TYPE_INODE_STORAGE,
            x if x == BPF_MAP_TYPE_TASK_STORAGE as u32 => BPF_MAP_TYPE_TASK_STORAGE,
            _ => return Err(MapError::InvalidMapType { map_type }),
        })
    }
}
pub(crate) struct PerCpuKernelMem {
    bytes: Vec<u8>,
}

impl PerCpuKernelMem {
    pub(crate) fn as_mut_ptr(&mut self) -> *mut u8 {
        self.bytes.as_mut_ptr()
    }
}

/// A slice of per-CPU values.
///
/// Used by maps that implement per-CPU storage like [`PerCpuHashMap`].
///
/// # Examples
///
/// ```no_run
/// # #[derive(thiserror::Error, Debug)]
/// # enum Error {
/// #     #[error(transparent)]
/// #     IO(#[from] std::io::Error),
/// #     #[error(transparent)]
/// #     Map(#[from] aya::maps::MapError),
/// #     #[error(transparent)]
/// #     Bpf(#[from] aya::BpfError)
/// # }
/// # let bpf = aya::Bpf::load(&[], None)?;
/// use aya::maps::PerCpuValues;
/// use aya::util::nr_cpus;
/// use std::convert::TryFrom;
///
/// let values = PerCpuValues::try_from(vec![42u32; nr_cpus()?])?;
/// # Ok::<(), Error>(())
/// ```
#[derive(Debug)]
pub struct PerCpuValues<T: Pod> {
    values: Box<[T]>,
}

impl<T: Pod> TryFrom<Vec<T>> for PerCpuValues<T> {
    type Error = io::Error;

    fn try_from(values: Vec<T>) -> Result<Self, Self::Error> {
        let nr_cpus = nr_cpus()?;
        if values.len() != nr_cpus {
            return Err(io::Error::new(
                io::ErrorKind::InvalidInput,
                format!("not enough values ({}), nr_cpus: {}", values.len(), nr_cpus),
            ));
        }
        Ok(PerCpuValues {
            values: values.into_boxed_slice(),
        })
    }
}

impl<T: Pod> PerCpuValues<T> {
    pub(crate) fn alloc_kernel_mem() -> Result<PerCpuKernelMem, io::Error> {
        let value_size = mem::size_of::<T>() + 7 & !7;
        Ok(PerCpuKernelMem {
            bytes: vec![0u8; nr_cpus()? * value_size],
        })
    }

    pub(crate) unsafe fn from_kernel_mem(mem: PerCpuKernelMem) -> PerCpuValues<T> {
        let mem_ptr = mem.bytes.as_ptr() as usize;
        let value_size = mem::size_of::<T>() + 7 & !7;
        let mut values = Vec::new();
        let mut offset = 0;
        while offset < mem.bytes.len() {
            values.push(ptr::read_unaligned((mem_ptr + offset) as *const _));
            offset += value_size;
        }

        PerCpuValues {
            values: values.into_boxed_slice(),
        }
    }

    pub(crate) fn into_kernel_mem(&self) -> Result<PerCpuKernelMem, io::Error> {
        let mut mem = PerCpuValues::<T>::alloc_kernel_mem()?;
        let mem_ptr = mem.as_mut_ptr() as usize;
        let value_size = mem::size_of::<T>() + 7 & !7;
        for i in 0..self.values.len() {
            unsafe { ptr::write_unaligned((mem_ptr + i * value_size) as *mut _, self.values[i]) };
        }

        Ok(mem)
    }
}

impl<T: Pod> Deref for PerCpuValues<T> {
    type Target = Box<[T]>;

    fn deref(&self) -> &Self::Target {
        &self.values
    }
}

#[cfg(test)]
mod tests {
    use libc::EFAULT;

    use crate::{
        bpf_map_def,
        generated::{bpf_cmd, bpf_map_type::BPF_MAP_TYPE_HASH},
        sys::{override_syscall, Syscall},
    };

    use super::*;

    fn new_obj_map(name: &str) -> obj::Map {
        obj::Map {
            name: name.to_string(),
            def: bpf_map_def {
                map_type: BPF_MAP_TYPE_HASH as u32,
                key_size: 4,
                value_size: 4,
                max_entries: 1024,
                map_flags: 0,
                id: 0,
                pinning: 0,
            },
            section_index: 0,
            data: Vec::new(),
        }
    }

    fn new_map(name: &str) -> Map {
        Map {
            obj: new_obj_map(name),
            fd: None,
        }
    }

    #[test]
    fn test_create() {
        override_syscall(|call| match call {
            Syscall::Bpf {
                cmd: bpf_cmd::BPF_MAP_CREATE,
                ..
            } => Ok(42),
            _ => Err((-1, io::Error::from_raw_os_error(EFAULT))),
        });

        let mut map = new_map("foo");
        assert!(matches!(map.create(), Ok(42)));
        assert_eq!(map.fd, Some(42));
        assert!(matches!(map.create(), Err(MapError::AlreadyCreated { .. })));
    }

    #[test]
    fn test_create_failed() {
        override_syscall(|_| {
            return Err((-42, io::Error::from_raw_os_error(EFAULT)));
        });

        let mut map = new_map("foo");
        let ret = map.create();
        assert!(matches!(ret, Err(MapError::CreateError { .. })));
        if let Err(MapError::CreateError {
            name,
            code,
            io_error,
        }) = ret
        {
            assert_eq!(name, "foo");
            assert_eq!(code, -42);
            assert_eq!(io_error.raw_os_error(), Some(EFAULT));
        }
        assert_eq!(map.fd, None);
    }
}