1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
//! X-Powers AXP173 Power Management IC
//! Datasheet: [/doc/AXP173 Datasheet v1.12_cn.zh-CN.en.pdf]

#![no_std]
#![deny(missing_docs)]
#![deny(unsafe_code)]

use embedded_hal::blocking::i2c::{Write, WriteRead};

use bit_field::BitField;

mod adc;
mod ldo;
mod regs;
mod units;

use units::*;
use regs::*;

pub use adc::AdcSettings;
pub use ldo::{Ldo, LdoKind};
pub use regs::{AdcSampleRate, ChargingCurrent, ChargingVoltage, TsPinMode};

use cortex_m_semihosting::hprintln;

/// AXP173 I2C address
/// 7-bit: 0x34
const AXP173_ADDR: u8 = 0x68;

/// Default values for the on-chip buffer.
/// Datasheet, p. 28, section 9.11.
const AXP173_ON_CHIP_BUFFER_DEFAULT: [u8; 6] = [0xf0, 0x0f, 0x00, 0xff, 0x00, 0x00];

type Axp173Result<T, E> = Result<T, Error<E>>;
type OperationResult<E> = Axp173Result<(), E>;

/// All possible errors in this crate
#[derive(Debug)]
pub enum Error<E> {
    /// I2C bus error
    I2c(E),

    /// Communication failure or invalid chip used
    InvalidChip([u8; 6]),
}

/// AXP173 PMIC instance.
pub struct Axp173<I> {
    i2c: I,
}

impl<I, E> Axp173<I>
where
    I: WriteRead<Error = E> + Write<Error = E>,
{
    /// Side-effect-free constructor.
    /// Nothing will be read or written before `init()` call.
    pub fn new(i2c: I) -> Self {
        Axp173 { i2c }
    }

    /// Checks the I2C connection to the AXP173 chip.
    /// AXP173 doesn't have a dedicated chip ID register and connection is checked by reading
    /// on-chip buffer for a presence of default values.
    pub fn init(&mut self) -> OperationResult<E> {
        self.read_u8(POWER_DATA_BUFFER1).map_err(Error::I2c)?;

        let buf = self.read_onchip_buffer()?;

        match buf {
            AXP173_ON_CHIP_BUFFER_DEFAULT => Ok(()),
            _ => Err(Error::InvalidChip(buf)),
        }
    }

    /// Reads 6-byte user data buffer from the chip.
    pub fn read_onchip_buffer(&mut self) -> Axp173Result<[u8; 6], E> {
        let mut buf = [0u8; 6];
        self.read_bytes(POWER_DATA_BUFFER1, &mut buf)
            .map_err(Error::I2c)?;

        Ok(buf)
    }

    /// Writes 6-byte user data buffer into the chip.
    #[allow(clippy::trivially_copy_pass_by_ref)] // On 32-bit ARMs it is not efficient to pass by value
    pub fn write_onchip_buffer(&mut self, bytes: &[u8; 6]) -> OperationResult<E> {
        let mut buf = [0u8; 6 + 1];

        buf[0] = POWER_DATA_BUFFER1;
        for (i, byte) in bytes.iter().enumerate() {
            buf[i + 1] = *byte;
        }

        self.i2c.write(AXP173_ADDR, &buf[..]).map_err(Error::I2c)?;

        Ok(())
    }

    /// Returns `true` if device is connected to the USB power source.
    pub fn vbus_present(&mut self) -> Axp173Result<bool, E> {
        let reg_val = self.read_u8(POWER_STATUS).map_err(Error::I2c)?;

        Ok(reg_val.get_bit(POWER_STATUS_VBUS_PRESENT))
    }

    /// Returns `true` if lithium battery is connected.
    pub fn battery_present(&mut self) -> Axp173Result<bool, E> {
        let reg_val = self.read_u8(POWER_MODE_CHGSTATUS).map_err(Error::I2c)?;

        Ok(reg_val.get_bit(POWER_MODE_CHGSTATUS_BATTERY_PRESENT))
    }

    /// Returns `true` if lithium battery is connected and currently charging.
    pub fn battery_charging(&mut self) -> Axp173Result<bool, E> {
        let reg_val = self.read_u8(POWER_MODE_CHGSTATUS).map_err(Error::I2c)?;

        Ok(reg_val.get_bit(POWER_MODE_CHGSTATUS_IS_CHARGING))
    }

    /// Enables selected LDO with selected output voltage.
    pub fn enable_ldo(&mut self, ldo: &Ldo) -> OperationResult<E> {
        self.set_ldo_voltage(&ldo)?;
        self.switch_ldo(&ldo.kind, true)
    }

    /// Disables selected LDO.
    pub fn disable_ldo(&mut self, ldo: &LdoKind) -> OperationResult<E> {
        self.switch_ldo(ldo, false)
    }

    fn switch_ldo(&mut self, ldo: &LdoKind, enable: bool) -> OperationResult<E> {
        let bit = match ldo {
            LdoKind::LDO2 => POWER_ON_OFF_REG_LDO2_ON,
            LdoKind::LDO3 => POWER_ON_OFF_REG_LDO3_ON,
            LdoKind::LDO4 => POWER_ON_OFF_REG_LDO4_ON,
        };

        let mut bits = self.read_u8(POWER_ON_OFF_REG).map_err(Error::I2c)?;

        bits.set_bit(bit, enable);

        self.write_u8(POWER_ON_OFF_REG, bits).map_err(Error::I2c)?;

        Ok(())
    }

    fn set_ldo_voltage(&mut self, ldo: &Ldo) -> OperationResult<E> {
        let reg = match &ldo.kind {
            LdoKind::LDO2 | LdoKind::LDO3 => LDO2_LDO3_OUT_VOL_REG,
            LdoKind::LDO4 => LDO4_OUT_VOL_REG,
        };

        let voltage = ldo.voltage;

        let mut bits = self.read_u8(reg).map_err(Error::I2c)?;

        let bits_range = match &ldo.kind {
            LdoKind::LDO2 => 4..8,
            LdoKind::LDO3 => 0..4,
            LdoKind::LDO4 => 0..7,
        };

        bits.set_bits(bits_range, voltage);

        self.write_u8(reg, bits).map_err(Error::I2c)?;

        Ok(())
    }

    /// Sets charging current of the battery. Adjust this for an efficient and safe charging of
    /// your lithium battery's capacity.
    pub fn set_charging_current(&mut self, current: ChargingCurrent) -> OperationResult<E> {
        let mut bits = self.read_u8(POWER_CHARGE1).map_err(Error::I2c)?;
        bits.set_bits(POWER_CHARGE1_CURRENT_SETTING, current.bits());

        self.write_u8(POWER_CHARGE1, bits).map_err(Error::I2c)?;

        Ok(())
    }

    /// Sets battery charging regulation voltage. This value varies depending on battery's chemistry
    /// and should be as close to the value from battery's datasheet as possible to ensure
    /// efficient charging and long battery life.
    pub fn set_charging_voltage(&mut self, voltage: ChargingVoltage) -> OperationResult<E> {
        let mut bits = self.read_u8(POWER_CHARGE1).map_err(Error::I2c)?;
        bits.set_bits(POWER_CHARGE1_VOLTAGE_SETTING, voltage.bits());

        self.write_u8(POWER_CHARGE1, bits).map_err(Error::I2c)?;

        Ok(())
    }

    /// Enables or disables battery charging.
    pub fn set_charging(&mut self, enabled: bool) -> OperationResult<E> {
        let mut bits = self.read_u8(POWER_CHARGE1).map_err(Error::I2c)?;
        bits.set_bit(POWER_CHARGE1_ENABLE_CHARGING, enabled);

        self.write_u8(POWER_CHARGE1, bits).map_err(Error::I2c)?;

        Ok(())
    }

    /// Enables or disables certain ADC functions of AXP173.
    pub fn set_adc_settings(&mut self, adc_settings: &AdcSettings) -> OperationResult<E> {
        // Set the contents of ADC enable/disable register.
        let mut bits = self.read_u8(POWER_ADC_EN1).map_err(Error::I2c)?;
        adc_settings.write_adc_en_bits(&mut bits);
        self.write_u8(POWER_ADC_EN1, bits).map_err(Error::I2c)?;

        // Set ADC sample rate
        let mut bits = self.read_u8(POWER_ADC_SPEED_TS).map_err(Error::I2c)?;
        adc_settings.write_adc_sample_rate_and_ts_bits(&mut bits);
        self.write_u8(POWER_ADC_SPEED_TS, bits)
            .map_err(Error::I2c)?;

        Ok(())
    }

    /// Returns VBUS voltage.
    pub fn vbus_voltage(&mut self) -> Axp173Result<Voltage, E> {
        let res = self.read_u12(POWER_VBUS_VOL_H8).map_err(Error::I2c)?;

        Ok(Voltage::new(res, VBUS_VOLTAGE_COEFF))
    }

    /// Returns battery charging current.
    pub fn vbus_current(&mut self) -> Axp173Result<Current, E> {
        let res = self.read_u13(POWER_VBUS_CUR_H8).map_err(Error::I2c)?;

        Ok(Current::new(res, VBUS_CURRENT_COEFF, VBUS_CURRENT_DIV))
    }

    /// Returns battery voltage.
    pub fn batt_voltage(&mut self) -> Axp173Result<Voltage, E> {
        let res = self.read_u12(POWER_BAT_AVERVOL_H8).map_err(Error::I2c)?;

        Ok(Voltage::new(res, BATT_VOLTAGE_COEFF))
    }

    /// Returns battery charging current.
    pub fn batt_charge_current(&mut self) -> Axp173Result<Current, E> {
        let res = self.read_u13(POWER_BAT_AVERCHGCUR_H8).map_err(Error::I2c)?;

        Ok(Current::new(res, BATT_CURRENT_COEFF, BATT_CURRENT_DIV))
    }

    /// Returns battery discharging current.
    pub fn batt_discharge_current(&mut self) -> Axp173Result<Current, E> {
        let res = self.read_u13(POWER_BAT_AVERDISCHGCUR_H8).map_err(Error::I2c)?;

        Ok(Current::new(res, BATT_CURRENT_COEFF, BATT_CURRENT_DIV))
    }

    /// Reads a 12-bit integer from two consecutive registers.
    fn read_u12(&mut self, msb_reg: u8) -> Result<u16, E> {
        let msb = self.read_u8(msb_reg)? as u16;
        let lsb = self.read_u8(msb_reg + 1)? as u16 & 0b1111;

        Ok(msb << 4 | lsb)
    }

    /// Reads a 13-bit integer from two consecutive registers.
    fn read_u13(&mut self, msb_reg: u8) -> Result<u16, E> {
        let msb = self.read_u8(msb_reg)? as u16;
        let lsb = self.read_u8(msb_reg + 1)? as u16 & 0b11111;

        Ok(msb << 5 | lsb)
    }

    fn read_u8(&mut self, reg: u8) -> Result<u8, E> {
        let mut byte: [u8; 1] = [0; 1];

        match self.i2c.write_read(AXP173_ADDR, &[reg], &mut byte) {
            Ok(_) => Ok(byte[0]),
            Err(e) => Err(e),
        }
    }

    fn read_bytes(&mut self, reg: u8, buf: &mut [u8]) -> Result<(), E> {
        self.i2c.write_read(AXP173_ADDR, &[reg], buf)
    }

    fn write_u8(&mut self, reg: u8, value: u8) -> Result<(), E> {
        self.i2c.write(AXP173_ADDR, &[reg, value])?;

        Ok(())
    }
}