1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
#[allow(missing_docs)] // documentation missing in model
#[non_exhaustive]
#[derive(::std::clone::Clone, ::std::cmp::PartialEq)]
pub struct CreateJobInput {
    /// <p>The name you assign to this job definition. It must be unique in your account.</p>
    pub name: ::std::option::Option<::std::string::String>,
    /// <p>A mode that describes how a job was created. Valid values are:</p>
    /// <ul>
    /// <li>
    /// <p><code>SCRIPT</code> - The job was created using the Glue Studio script editor.</p></li>
    /// <li>
    /// <p><code>VISUAL</code> - The job was created using the Glue Studio visual editor.</p></li>
    /// <li>
    /// <p><code>NOTEBOOK</code> - The job was created using an interactive sessions notebook.</p></li>
    /// </ul>
    /// <p>When the <code>JobMode</code> field is missing or null, <code>SCRIPT</code> is assigned as the default value.</p>
    pub job_mode: ::std::option::Option<crate::types::JobMode>,
    /// <p>Description of the job being defined.</p>
    pub description: ::std::option::Option<::std::string::String>,
    /// <p>This field is reserved for future use.</p>
    pub log_uri: ::std::option::Option<::std::string::String>,
    /// <p>The name or Amazon Resource Name (ARN) of the IAM role associated with this job.</p>
    pub role: ::std::option::Option<::std::string::String>,
    /// <p>An <code>ExecutionProperty</code> specifying the maximum number of concurrent runs allowed for this job.</p>
    pub execution_property: ::std::option::Option<crate::types::ExecutionProperty>,
    /// <p>The <code>JobCommand</code> that runs this job.</p>
    pub command: ::std::option::Option<crate::types::JobCommand>,
    /// <p>The default arguments for every run of this job, specified as name-value pairs.</p>
    /// <p>You can specify arguments here that your own job-execution script consumes, as well as arguments that Glue itself consumes.</p>
    /// <p>Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Secrets Manager or other secret management mechanism if you intend to keep them within the Job.</p>
    /// <p>For information about how to specify and consume your own Job arguments, see the <a href="https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html">Calling Glue APIs in Python</a> topic in the developer guide.</p>
    /// <p>For information about the arguments you can provide to this field when configuring Spark jobs, see the <a href="https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html">Special Parameters Used by Glue</a> topic in the developer guide.</p>
    /// <p>For information about the arguments you can provide to this field when configuring Ray jobs, see <a href="https://docs.aws.amazon.com/glue/latest/dg/author-job-ray-job-parameters.html">Using job parameters in Ray jobs</a> in the developer guide.</p>
    pub default_arguments: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
    /// <p>Arguments for this job that are not overridden when providing job arguments in a job run, specified as name-value pairs.</p>
    pub non_overridable_arguments: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
    /// <p>The connections used for this job.</p>
    pub connections: ::std::option::Option<crate::types::ConnectionsList>,
    /// <p>The maximum number of times to retry this job if it fails.</p>
    pub max_retries: ::std::option::Option<i32>,
    /// <p>This parameter is deprecated. Use <code>MaxCapacity</code> instead.</p>
    /// <p>The number of Glue data processing units (DPUs) to allocate to this Job. You can allocate a minimum of 2 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the <a href="https://aws.amazon.com/glue/pricing/">Glue pricing page</a>.</p>
    #[deprecated(note = "This property is deprecated, use MaxCapacity instead.")]
    pub allocated_capacity: ::std::option::Option<i32>,
    /// <p>The job timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters <code>TIMEOUT</code> status. The default is 2,880 minutes (48 hours) for batch jobs.</p>
    /// <p>Streaming jobs must have timeout values less than 7 days or 10080 minutes. When the value is left blank, the job will be restarted after 7 days based if you have not setup a maintenance window. If you have setup maintenance window, it will be restarted during the maintenance window after 7 days.</p>
    pub timeout: ::std::option::Option<i32>,
    /// <p>For Glue version 1.0 or earlier jobs, using the standard worker type, the number of Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the <a href="https://aws.amazon.com/glue/pricing/"> Glue pricing page</a>.</p>
    /// <p>For Glue version 2.0+ jobs, you cannot specify a <code>Maximum capacity</code>. Instead, you should specify a <code>Worker type</code> and the <code>Number of workers</code>.</p>
    /// <p>Do not set <code>MaxCapacity</code> if using <code>WorkerType</code> and <code>NumberOfWorkers</code>.</p>
    /// <p>The value that can be allocated for <code>MaxCapacity</code> depends on whether you are running a Python shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:</p>
    /// <ul>
    /// <li>
    /// <p>When you specify a Python shell job (<code>JobCommand.Name</code>="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU.</p></li>
    /// <li>
    /// <p>When you specify an Apache Spark ETL job (<code>JobCommand.Name</code>="glueetl") or Apache Spark streaming ETL job (<code>JobCommand.Name</code>="gluestreaming"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.</p></li>
    /// </ul>
    pub max_capacity: ::std::option::Option<f64>,
    /// <p>The name of the <code>SecurityConfiguration</code> structure to be used with this job.</p>
    pub security_configuration: ::std::option::Option<::std::string::String>,
    /// <p>The tags to use with this job. You may use tags to limit access to the job. For more information about tags in Glue, see <a href="https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html">Amazon Web Services Tags in Glue</a> in the developer guide.</p>
    pub tags: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
    /// <p>Specifies configuration properties of a job notification.</p>
    pub notification_property: ::std::option::Option<crate::types::NotificationProperty>,
    /// <p>In Spark jobs, <code>GlueVersion</code> determines the versions of Apache Spark and Python that Glue available in a job. The Python version indicates the version supported for jobs of type Spark.</p>
    /// <p>Ray jobs should set <code>GlueVersion</code> to <code>4.0</code> or greater. However, the versions of Ray, Python and additional libraries available in your Ray job are determined by the <code>Runtime</code> parameter of the Job command.</p>
    /// <p>For more information about the available Glue versions and corresponding Spark and Python versions, see <a href="https://docs.aws.amazon.com/glue/latest/dg/add-job.html">Glue version</a> in the developer guide.</p>
    /// <p>Jobs that are created without specifying a Glue version default to Glue 0.9.</p>
    pub glue_version: ::std::option::Option<::std::string::String>,
    /// <p>The number of workers of a defined <code>workerType</code> that are allocated when a job runs.</p>
    pub number_of_workers: ::std::option::Option<i32>,
    /// <p>The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
    /// <ul>
    /// <li>
    /// <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p></li>
    /// <li>
    /// <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p></li>
    /// <li>
    /// <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p></li>
    /// <li>
    /// <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p></li>
    /// <li>
    /// <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p></li>
    /// <li>
    /// <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p></li>
    /// </ul>
    pub worker_type: ::std::option::Option<crate::types::WorkerType>,
    /// <p>The representation of a directed acyclic graph on which both the Glue Studio visual component and Glue Studio code generation is based.</p>
    pub code_gen_configuration_nodes:
        ::std::option::Option<::std::collections::HashMap<::std::string::String, crate::types::CodeGenConfigurationNode>>,
    /// <p>Indicates whether the job is run with a standard or flexible execution class. The standard execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated resources.</p>
    /// <p>The flexible execution class is appropriate for time-insensitive jobs whose start and completion times may vary.</p>
    /// <p>Only jobs with Glue version 3.0 and above and command type <code>glueetl</code> will be allowed to set <code>ExecutionClass</code> to <code>FLEX</code>. The flexible execution class is available for Spark jobs.</p>
    pub execution_class: ::std::option::Option<crate::types::ExecutionClass>,
    /// <p>The details for a source control configuration for a job, allowing synchronization of job artifacts to or from a remote repository.</p>
    pub source_control_details: ::std::option::Option<crate::types::SourceControlDetails>,
    /// <p>This field specifies a day of the week and hour for a maintenance window for streaming jobs. Glue periodically performs maintenance activities. During these maintenance windows, Glue will need to restart your streaming jobs.</p>
    /// <p>Glue will restart the job within 3 hours of the specified maintenance window. For instance, if you set up the maintenance window for Monday at 10:00AM GMT, your jobs will be restarted between 10:00AM GMT to 1:00PM GMT.</p>
    pub maintenance_window: ::std::option::Option<::std::string::String>,
}
impl CreateJobInput {
    /// <p>The name you assign to this job definition. It must be unique in your account.</p>
    pub fn name(&self) -> ::std::option::Option<&str> {
        self.name.as_deref()
    }
    /// <p>A mode that describes how a job was created. Valid values are:</p>
    /// <ul>
    /// <li>
    /// <p><code>SCRIPT</code> - The job was created using the Glue Studio script editor.</p></li>
    /// <li>
    /// <p><code>VISUAL</code> - The job was created using the Glue Studio visual editor.</p></li>
    /// <li>
    /// <p><code>NOTEBOOK</code> - The job was created using an interactive sessions notebook.</p></li>
    /// </ul>
    /// <p>When the <code>JobMode</code> field is missing or null, <code>SCRIPT</code> is assigned as the default value.</p>
    pub fn job_mode(&self) -> ::std::option::Option<&crate::types::JobMode> {
        self.job_mode.as_ref()
    }
    /// <p>Description of the job being defined.</p>
    pub fn description(&self) -> ::std::option::Option<&str> {
        self.description.as_deref()
    }
    /// <p>This field is reserved for future use.</p>
    pub fn log_uri(&self) -> ::std::option::Option<&str> {
        self.log_uri.as_deref()
    }
    /// <p>The name or Amazon Resource Name (ARN) of the IAM role associated with this job.</p>
    pub fn role(&self) -> ::std::option::Option<&str> {
        self.role.as_deref()
    }
    /// <p>An <code>ExecutionProperty</code> specifying the maximum number of concurrent runs allowed for this job.</p>
    pub fn execution_property(&self) -> ::std::option::Option<&crate::types::ExecutionProperty> {
        self.execution_property.as_ref()
    }
    /// <p>The <code>JobCommand</code> that runs this job.</p>
    pub fn command(&self) -> ::std::option::Option<&crate::types::JobCommand> {
        self.command.as_ref()
    }
    /// <p>The default arguments for every run of this job, specified as name-value pairs.</p>
    /// <p>You can specify arguments here that your own job-execution script consumes, as well as arguments that Glue itself consumes.</p>
    /// <p>Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Secrets Manager or other secret management mechanism if you intend to keep them within the Job.</p>
    /// <p>For information about how to specify and consume your own Job arguments, see the <a href="https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html">Calling Glue APIs in Python</a> topic in the developer guide.</p>
    /// <p>For information about the arguments you can provide to this field when configuring Spark jobs, see the <a href="https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html">Special Parameters Used by Glue</a> topic in the developer guide.</p>
    /// <p>For information about the arguments you can provide to this field when configuring Ray jobs, see <a href="https://docs.aws.amazon.com/glue/latest/dg/author-job-ray-job-parameters.html">Using job parameters in Ray jobs</a> in the developer guide.</p>
    pub fn default_arguments(&self) -> ::std::option::Option<&::std::collections::HashMap<::std::string::String, ::std::string::String>> {
        self.default_arguments.as_ref()
    }
    /// <p>Arguments for this job that are not overridden when providing job arguments in a job run, specified as name-value pairs.</p>
    pub fn non_overridable_arguments(&self) -> ::std::option::Option<&::std::collections::HashMap<::std::string::String, ::std::string::String>> {
        self.non_overridable_arguments.as_ref()
    }
    /// <p>The connections used for this job.</p>
    pub fn connections(&self) -> ::std::option::Option<&crate::types::ConnectionsList> {
        self.connections.as_ref()
    }
    /// <p>The maximum number of times to retry this job if it fails.</p>
    pub fn max_retries(&self) -> ::std::option::Option<i32> {
        self.max_retries
    }
    /// <p>This parameter is deprecated. Use <code>MaxCapacity</code> instead.</p>
    /// <p>The number of Glue data processing units (DPUs) to allocate to this Job. You can allocate a minimum of 2 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the <a href="https://aws.amazon.com/glue/pricing/">Glue pricing page</a>.</p>
    #[deprecated(note = "This property is deprecated, use MaxCapacity instead.")]
    pub fn allocated_capacity(&self) -> ::std::option::Option<i32> {
        self.allocated_capacity
    }
    /// <p>The job timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters <code>TIMEOUT</code> status. The default is 2,880 minutes (48 hours) for batch jobs.</p>
    /// <p>Streaming jobs must have timeout values less than 7 days or 10080 minutes. When the value is left blank, the job will be restarted after 7 days based if you have not setup a maintenance window. If you have setup maintenance window, it will be restarted during the maintenance window after 7 days.</p>
    pub fn timeout(&self) -> ::std::option::Option<i32> {
        self.timeout
    }
    /// <p>For Glue version 1.0 or earlier jobs, using the standard worker type, the number of Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the <a href="https://aws.amazon.com/glue/pricing/"> Glue pricing page</a>.</p>
    /// <p>For Glue version 2.0+ jobs, you cannot specify a <code>Maximum capacity</code>. Instead, you should specify a <code>Worker type</code> and the <code>Number of workers</code>.</p>
    /// <p>Do not set <code>MaxCapacity</code> if using <code>WorkerType</code> and <code>NumberOfWorkers</code>.</p>
    /// <p>The value that can be allocated for <code>MaxCapacity</code> depends on whether you are running a Python shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:</p>
    /// <ul>
    /// <li>
    /// <p>When you specify a Python shell job (<code>JobCommand.Name</code>="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU.</p></li>
    /// <li>
    /// <p>When you specify an Apache Spark ETL job (<code>JobCommand.Name</code>="glueetl") or Apache Spark streaming ETL job (<code>JobCommand.Name</code>="gluestreaming"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.</p></li>
    /// </ul>
    pub fn max_capacity(&self) -> ::std::option::Option<f64> {
        self.max_capacity
    }
    /// <p>The name of the <code>SecurityConfiguration</code> structure to be used with this job.</p>
    pub fn security_configuration(&self) -> ::std::option::Option<&str> {
        self.security_configuration.as_deref()
    }
    /// <p>The tags to use with this job. You may use tags to limit access to the job. For more information about tags in Glue, see <a href="https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html">Amazon Web Services Tags in Glue</a> in the developer guide.</p>
    pub fn tags(&self) -> ::std::option::Option<&::std::collections::HashMap<::std::string::String, ::std::string::String>> {
        self.tags.as_ref()
    }
    /// <p>Specifies configuration properties of a job notification.</p>
    pub fn notification_property(&self) -> ::std::option::Option<&crate::types::NotificationProperty> {
        self.notification_property.as_ref()
    }
    /// <p>In Spark jobs, <code>GlueVersion</code> determines the versions of Apache Spark and Python that Glue available in a job. The Python version indicates the version supported for jobs of type Spark.</p>
    /// <p>Ray jobs should set <code>GlueVersion</code> to <code>4.0</code> or greater. However, the versions of Ray, Python and additional libraries available in your Ray job are determined by the <code>Runtime</code> parameter of the Job command.</p>
    /// <p>For more information about the available Glue versions and corresponding Spark and Python versions, see <a href="https://docs.aws.amazon.com/glue/latest/dg/add-job.html">Glue version</a> in the developer guide.</p>
    /// <p>Jobs that are created without specifying a Glue version default to Glue 0.9.</p>
    pub fn glue_version(&self) -> ::std::option::Option<&str> {
        self.glue_version.as_deref()
    }
    /// <p>The number of workers of a defined <code>workerType</code> that are allocated when a job runs.</p>
    pub fn number_of_workers(&self) -> ::std::option::Option<i32> {
        self.number_of_workers
    }
    /// <p>The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
    /// <ul>
    /// <li>
    /// <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p></li>
    /// <li>
    /// <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p></li>
    /// <li>
    /// <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p></li>
    /// <li>
    /// <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p></li>
    /// <li>
    /// <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p></li>
    /// <li>
    /// <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p></li>
    /// </ul>
    pub fn worker_type(&self) -> ::std::option::Option<&crate::types::WorkerType> {
        self.worker_type.as_ref()
    }
    /// <p>The representation of a directed acyclic graph on which both the Glue Studio visual component and Glue Studio code generation is based.</p>
    pub fn code_gen_configuration_nodes(
        &self,
    ) -> ::std::option::Option<&::std::collections::HashMap<::std::string::String, crate::types::CodeGenConfigurationNode>> {
        self.code_gen_configuration_nodes.as_ref()
    }
    /// <p>Indicates whether the job is run with a standard or flexible execution class. The standard execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated resources.</p>
    /// <p>The flexible execution class is appropriate for time-insensitive jobs whose start and completion times may vary.</p>
    /// <p>Only jobs with Glue version 3.0 and above and command type <code>glueetl</code> will be allowed to set <code>ExecutionClass</code> to <code>FLEX</code>. The flexible execution class is available for Spark jobs.</p>
    pub fn execution_class(&self) -> ::std::option::Option<&crate::types::ExecutionClass> {
        self.execution_class.as_ref()
    }
    /// <p>The details for a source control configuration for a job, allowing synchronization of job artifacts to or from a remote repository.</p>
    pub fn source_control_details(&self) -> ::std::option::Option<&crate::types::SourceControlDetails> {
        self.source_control_details.as_ref()
    }
    /// <p>This field specifies a day of the week and hour for a maintenance window for streaming jobs. Glue periodically performs maintenance activities. During these maintenance windows, Glue will need to restart your streaming jobs.</p>
    /// <p>Glue will restart the job within 3 hours of the specified maintenance window. For instance, if you set up the maintenance window for Monday at 10:00AM GMT, your jobs will be restarted between 10:00AM GMT to 1:00PM GMT.</p>
    pub fn maintenance_window(&self) -> ::std::option::Option<&str> {
        self.maintenance_window.as_deref()
    }
}
impl ::std::fmt::Debug for CreateJobInput {
    fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
        let mut formatter = f.debug_struct("CreateJobInput");
        formatter.field("name", &self.name);
        formatter.field("job_mode", &self.job_mode);
        formatter.field("description", &self.description);
        formatter.field("log_uri", &self.log_uri);
        formatter.field("role", &self.role);
        formatter.field("execution_property", &self.execution_property);
        formatter.field("command", &self.command);
        formatter.field("default_arguments", &self.default_arguments);
        formatter.field("non_overridable_arguments", &self.non_overridable_arguments);
        formatter.field("connections", &self.connections);
        formatter.field("max_retries", &self.max_retries);
        formatter.field("allocated_capacity", &self.allocated_capacity);
        formatter.field("timeout", &self.timeout);
        formatter.field("max_capacity", &self.max_capacity);
        formatter.field("security_configuration", &self.security_configuration);
        formatter.field("tags", &self.tags);
        formatter.field("notification_property", &self.notification_property);
        formatter.field("glue_version", &self.glue_version);
        formatter.field("number_of_workers", &self.number_of_workers);
        formatter.field("worker_type", &self.worker_type);
        formatter.field("code_gen_configuration_nodes", &"*** Sensitive Data Redacted ***");
        formatter.field("execution_class", &self.execution_class);
        formatter.field("source_control_details", &self.source_control_details);
        formatter.field("maintenance_window", &self.maintenance_window);
        formatter.finish()
    }
}
impl CreateJobInput {
    /// Creates a new builder-style object to manufacture [`CreateJobInput`](crate::operation::create_job::CreateJobInput).
    pub fn builder() -> crate::operation::create_job::builders::CreateJobInputBuilder {
        crate::operation::create_job::builders::CreateJobInputBuilder::default()
    }
}

/// A builder for [`CreateJobInput`](crate::operation::create_job::CreateJobInput).
#[non_exhaustive]
#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::default::Default)]
pub struct CreateJobInputBuilder {
    pub(crate) name: ::std::option::Option<::std::string::String>,
    pub(crate) job_mode: ::std::option::Option<crate::types::JobMode>,
    pub(crate) description: ::std::option::Option<::std::string::String>,
    pub(crate) log_uri: ::std::option::Option<::std::string::String>,
    pub(crate) role: ::std::option::Option<::std::string::String>,
    pub(crate) execution_property: ::std::option::Option<crate::types::ExecutionProperty>,
    pub(crate) command: ::std::option::Option<crate::types::JobCommand>,
    pub(crate) default_arguments: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
    pub(crate) non_overridable_arguments: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
    pub(crate) connections: ::std::option::Option<crate::types::ConnectionsList>,
    pub(crate) max_retries: ::std::option::Option<i32>,
    pub(crate) allocated_capacity: ::std::option::Option<i32>,
    pub(crate) timeout: ::std::option::Option<i32>,
    pub(crate) max_capacity: ::std::option::Option<f64>,
    pub(crate) security_configuration: ::std::option::Option<::std::string::String>,
    pub(crate) tags: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
    pub(crate) notification_property: ::std::option::Option<crate::types::NotificationProperty>,
    pub(crate) glue_version: ::std::option::Option<::std::string::String>,
    pub(crate) number_of_workers: ::std::option::Option<i32>,
    pub(crate) worker_type: ::std::option::Option<crate::types::WorkerType>,
    pub(crate) code_gen_configuration_nodes:
        ::std::option::Option<::std::collections::HashMap<::std::string::String, crate::types::CodeGenConfigurationNode>>,
    pub(crate) execution_class: ::std::option::Option<crate::types::ExecutionClass>,
    pub(crate) source_control_details: ::std::option::Option<crate::types::SourceControlDetails>,
    pub(crate) maintenance_window: ::std::option::Option<::std::string::String>,
}
impl CreateJobInputBuilder {
    /// <p>The name you assign to this job definition. It must be unique in your account.</p>
    /// This field is required.
    pub fn name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.name = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>The name you assign to this job definition. It must be unique in your account.</p>
    pub fn set_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.name = input;
        self
    }
    /// <p>The name you assign to this job definition. It must be unique in your account.</p>
    pub fn get_name(&self) -> &::std::option::Option<::std::string::String> {
        &self.name
    }
    /// <p>A mode that describes how a job was created. Valid values are:</p>
    /// <ul>
    /// <li>
    /// <p><code>SCRIPT</code> - The job was created using the Glue Studio script editor.</p></li>
    /// <li>
    /// <p><code>VISUAL</code> - The job was created using the Glue Studio visual editor.</p></li>
    /// <li>
    /// <p><code>NOTEBOOK</code> - The job was created using an interactive sessions notebook.</p></li>
    /// </ul>
    /// <p>When the <code>JobMode</code> field is missing or null, <code>SCRIPT</code> is assigned as the default value.</p>
    pub fn job_mode(mut self, input: crate::types::JobMode) -> Self {
        self.job_mode = ::std::option::Option::Some(input);
        self
    }
    /// <p>A mode that describes how a job was created. Valid values are:</p>
    /// <ul>
    /// <li>
    /// <p><code>SCRIPT</code> - The job was created using the Glue Studio script editor.</p></li>
    /// <li>
    /// <p><code>VISUAL</code> - The job was created using the Glue Studio visual editor.</p></li>
    /// <li>
    /// <p><code>NOTEBOOK</code> - The job was created using an interactive sessions notebook.</p></li>
    /// </ul>
    /// <p>When the <code>JobMode</code> field is missing or null, <code>SCRIPT</code> is assigned as the default value.</p>
    pub fn set_job_mode(mut self, input: ::std::option::Option<crate::types::JobMode>) -> Self {
        self.job_mode = input;
        self
    }
    /// <p>A mode that describes how a job was created. Valid values are:</p>
    /// <ul>
    /// <li>
    /// <p><code>SCRIPT</code> - The job was created using the Glue Studio script editor.</p></li>
    /// <li>
    /// <p><code>VISUAL</code> - The job was created using the Glue Studio visual editor.</p></li>
    /// <li>
    /// <p><code>NOTEBOOK</code> - The job was created using an interactive sessions notebook.</p></li>
    /// </ul>
    /// <p>When the <code>JobMode</code> field is missing or null, <code>SCRIPT</code> is assigned as the default value.</p>
    pub fn get_job_mode(&self) -> &::std::option::Option<crate::types::JobMode> {
        &self.job_mode
    }
    /// <p>Description of the job being defined.</p>
    pub fn description(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.description = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>Description of the job being defined.</p>
    pub fn set_description(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.description = input;
        self
    }
    /// <p>Description of the job being defined.</p>
    pub fn get_description(&self) -> &::std::option::Option<::std::string::String> {
        &self.description
    }
    /// <p>This field is reserved for future use.</p>
    pub fn log_uri(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.log_uri = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>This field is reserved for future use.</p>
    pub fn set_log_uri(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.log_uri = input;
        self
    }
    /// <p>This field is reserved for future use.</p>
    pub fn get_log_uri(&self) -> &::std::option::Option<::std::string::String> {
        &self.log_uri
    }
    /// <p>The name or Amazon Resource Name (ARN) of the IAM role associated with this job.</p>
    /// This field is required.
    pub fn role(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.role = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>The name or Amazon Resource Name (ARN) of the IAM role associated with this job.</p>
    pub fn set_role(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.role = input;
        self
    }
    /// <p>The name or Amazon Resource Name (ARN) of the IAM role associated with this job.</p>
    pub fn get_role(&self) -> &::std::option::Option<::std::string::String> {
        &self.role
    }
    /// <p>An <code>ExecutionProperty</code> specifying the maximum number of concurrent runs allowed for this job.</p>
    pub fn execution_property(mut self, input: crate::types::ExecutionProperty) -> Self {
        self.execution_property = ::std::option::Option::Some(input);
        self
    }
    /// <p>An <code>ExecutionProperty</code> specifying the maximum number of concurrent runs allowed for this job.</p>
    pub fn set_execution_property(mut self, input: ::std::option::Option<crate::types::ExecutionProperty>) -> Self {
        self.execution_property = input;
        self
    }
    /// <p>An <code>ExecutionProperty</code> specifying the maximum number of concurrent runs allowed for this job.</p>
    pub fn get_execution_property(&self) -> &::std::option::Option<crate::types::ExecutionProperty> {
        &self.execution_property
    }
    /// <p>The <code>JobCommand</code> that runs this job.</p>
    /// This field is required.
    pub fn command(mut self, input: crate::types::JobCommand) -> Self {
        self.command = ::std::option::Option::Some(input);
        self
    }
    /// <p>The <code>JobCommand</code> that runs this job.</p>
    pub fn set_command(mut self, input: ::std::option::Option<crate::types::JobCommand>) -> Self {
        self.command = input;
        self
    }
    /// <p>The <code>JobCommand</code> that runs this job.</p>
    pub fn get_command(&self) -> &::std::option::Option<crate::types::JobCommand> {
        &self.command
    }
    /// Adds a key-value pair to `default_arguments`.
    ///
    /// To override the contents of this collection use [`set_default_arguments`](Self::set_default_arguments).
    ///
    /// <p>The default arguments for every run of this job, specified as name-value pairs.</p>
    /// <p>You can specify arguments here that your own job-execution script consumes, as well as arguments that Glue itself consumes.</p>
    /// <p>Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Secrets Manager or other secret management mechanism if you intend to keep them within the Job.</p>
    /// <p>For information about how to specify and consume your own Job arguments, see the <a href="https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html">Calling Glue APIs in Python</a> topic in the developer guide.</p>
    /// <p>For information about the arguments you can provide to this field when configuring Spark jobs, see the <a href="https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html">Special Parameters Used by Glue</a> topic in the developer guide.</p>
    /// <p>For information about the arguments you can provide to this field when configuring Ray jobs, see <a href="https://docs.aws.amazon.com/glue/latest/dg/author-job-ray-job-parameters.html">Using job parameters in Ray jobs</a> in the developer guide.</p>
    pub fn default_arguments(
        mut self,
        k: impl ::std::convert::Into<::std::string::String>,
        v: impl ::std::convert::Into<::std::string::String>,
    ) -> Self {
        let mut hash_map = self.default_arguments.unwrap_or_default();
        hash_map.insert(k.into(), v.into());
        self.default_arguments = ::std::option::Option::Some(hash_map);
        self
    }
    /// <p>The default arguments for every run of this job, specified as name-value pairs.</p>
    /// <p>You can specify arguments here that your own job-execution script consumes, as well as arguments that Glue itself consumes.</p>
    /// <p>Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Secrets Manager or other secret management mechanism if you intend to keep them within the Job.</p>
    /// <p>For information about how to specify and consume your own Job arguments, see the <a href="https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html">Calling Glue APIs in Python</a> topic in the developer guide.</p>
    /// <p>For information about the arguments you can provide to this field when configuring Spark jobs, see the <a href="https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html">Special Parameters Used by Glue</a> topic in the developer guide.</p>
    /// <p>For information about the arguments you can provide to this field when configuring Ray jobs, see <a href="https://docs.aws.amazon.com/glue/latest/dg/author-job-ray-job-parameters.html">Using job parameters in Ray jobs</a> in the developer guide.</p>
    pub fn set_default_arguments(
        mut self,
        input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
    ) -> Self {
        self.default_arguments = input;
        self
    }
    /// <p>The default arguments for every run of this job, specified as name-value pairs.</p>
    /// <p>You can specify arguments here that your own job-execution script consumes, as well as arguments that Glue itself consumes.</p>
    /// <p>Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Secrets Manager or other secret management mechanism if you intend to keep them within the Job.</p>
    /// <p>For information about how to specify and consume your own Job arguments, see the <a href="https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-calling.html">Calling Glue APIs in Python</a> topic in the developer guide.</p>
    /// <p>For information about the arguments you can provide to this field when configuring Spark jobs, see the <a href="https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html">Special Parameters Used by Glue</a> topic in the developer guide.</p>
    /// <p>For information about the arguments you can provide to this field when configuring Ray jobs, see <a href="https://docs.aws.amazon.com/glue/latest/dg/author-job-ray-job-parameters.html">Using job parameters in Ray jobs</a> in the developer guide.</p>
    pub fn get_default_arguments(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
        &self.default_arguments
    }
    /// Adds a key-value pair to `non_overridable_arguments`.
    ///
    /// To override the contents of this collection use [`set_non_overridable_arguments`](Self::set_non_overridable_arguments).
    ///
    /// <p>Arguments for this job that are not overridden when providing job arguments in a job run, specified as name-value pairs.</p>
    pub fn non_overridable_arguments(
        mut self,
        k: impl ::std::convert::Into<::std::string::String>,
        v: impl ::std::convert::Into<::std::string::String>,
    ) -> Self {
        let mut hash_map = self.non_overridable_arguments.unwrap_or_default();
        hash_map.insert(k.into(), v.into());
        self.non_overridable_arguments = ::std::option::Option::Some(hash_map);
        self
    }
    /// <p>Arguments for this job that are not overridden when providing job arguments in a job run, specified as name-value pairs.</p>
    pub fn set_non_overridable_arguments(
        mut self,
        input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>,
    ) -> Self {
        self.non_overridable_arguments = input;
        self
    }
    /// <p>Arguments for this job that are not overridden when providing job arguments in a job run, specified as name-value pairs.</p>
    pub fn get_non_overridable_arguments(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
        &self.non_overridable_arguments
    }
    /// <p>The connections used for this job.</p>
    pub fn connections(mut self, input: crate::types::ConnectionsList) -> Self {
        self.connections = ::std::option::Option::Some(input);
        self
    }
    /// <p>The connections used for this job.</p>
    pub fn set_connections(mut self, input: ::std::option::Option<crate::types::ConnectionsList>) -> Self {
        self.connections = input;
        self
    }
    /// <p>The connections used for this job.</p>
    pub fn get_connections(&self) -> &::std::option::Option<crate::types::ConnectionsList> {
        &self.connections
    }
    /// <p>The maximum number of times to retry this job if it fails.</p>
    pub fn max_retries(mut self, input: i32) -> Self {
        self.max_retries = ::std::option::Option::Some(input);
        self
    }
    /// <p>The maximum number of times to retry this job if it fails.</p>
    pub fn set_max_retries(mut self, input: ::std::option::Option<i32>) -> Self {
        self.max_retries = input;
        self
    }
    /// <p>The maximum number of times to retry this job if it fails.</p>
    pub fn get_max_retries(&self) -> &::std::option::Option<i32> {
        &self.max_retries
    }
    /// <p>This parameter is deprecated. Use <code>MaxCapacity</code> instead.</p>
    /// <p>The number of Glue data processing units (DPUs) to allocate to this Job. You can allocate a minimum of 2 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the <a href="https://aws.amazon.com/glue/pricing/">Glue pricing page</a>.</p>
    #[deprecated(note = "This property is deprecated, use MaxCapacity instead.")]
    pub fn allocated_capacity(mut self, input: i32) -> Self {
        self.allocated_capacity = ::std::option::Option::Some(input);
        self
    }
    /// <p>This parameter is deprecated. Use <code>MaxCapacity</code> instead.</p>
    /// <p>The number of Glue data processing units (DPUs) to allocate to this Job. You can allocate a minimum of 2 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the <a href="https://aws.amazon.com/glue/pricing/">Glue pricing page</a>.</p>
    #[deprecated(note = "This property is deprecated, use MaxCapacity instead.")]
    pub fn set_allocated_capacity(mut self, input: ::std::option::Option<i32>) -> Self {
        self.allocated_capacity = input;
        self
    }
    /// <p>This parameter is deprecated. Use <code>MaxCapacity</code> instead.</p>
    /// <p>The number of Glue data processing units (DPUs) to allocate to this Job. You can allocate a minimum of 2 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the <a href="https://aws.amazon.com/glue/pricing/">Glue pricing page</a>.</p>
    #[deprecated(note = "This property is deprecated, use MaxCapacity instead.")]
    pub fn get_allocated_capacity(&self) -> &::std::option::Option<i32> {
        &self.allocated_capacity
    }
    /// <p>The job timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters <code>TIMEOUT</code> status. The default is 2,880 minutes (48 hours) for batch jobs.</p>
    /// <p>Streaming jobs must have timeout values less than 7 days or 10080 minutes. When the value is left blank, the job will be restarted after 7 days based if you have not setup a maintenance window. If you have setup maintenance window, it will be restarted during the maintenance window after 7 days.</p>
    pub fn timeout(mut self, input: i32) -> Self {
        self.timeout = ::std::option::Option::Some(input);
        self
    }
    /// <p>The job timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters <code>TIMEOUT</code> status. The default is 2,880 minutes (48 hours) for batch jobs.</p>
    /// <p>Streaming jobs must have timeout values less than 7 days or 10080 minutes. When the value is left blank, the job will be restarted after 7 days based if you have not setup a maintenance window. If you have setup maintenance window, it will be restarted during the maintenance window after 7 days.</p>
    pub fn set_timeout(mut self, input: ::std::option::Option<i32>) -> Self {
        self.timeout = input;
        self
    }
    /// <p>The job timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters <code>TIMEOUT</code> status. The default is 2,880 minutes (48 hours) for batch jobs.</p>
    /// <p>Streaming jobs must have timeout values less than 7 days or 10080 minutes. When the value is left blank, the job will be restarted after 7 days based if you have not setup a maintenance window. If you have setup maintenance window, it will be restarted during the maintenance window after 7 days.</p>
    pub fn get_timeout(&self) -> &::std::option::Option<i32> {
        &self.timeout
    }
    /// <p>For Glue version 1.0 or earlier jobs, using the standard worker type, the number of Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the <a href="https://aws.amazon.com/glue/pricing/"> Glue pricing page</a>.</p>
    /// <p>For Glue version 2.0+ jobs, you cannot specify a <code>Maximum capacity</code>. Instead, you should specify a <code>Worker type</code> and the <code>Number of workers</code>.</p>
    /// <p>Do not set <code>MaxCapacity</code> if using <code>WorkerType</code> and <code>NumberOfWorkers</code>.</p>
    /// <p>The value that can be allocated for <code>MaxCapacity</code> depends on whether you are running a Python shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:</p>
    /// <ul>
    /// <li>
    /// <p>When you specify a Python shell job (<code>JobCommand.Name</code>="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU.</p></li>
    /// <li>
    /// <p>When you specify an Apache Spark ETL job (<code>JobCommand.Name</code>="glueetl") or Apache Spark streaming ETL job (<code>JobCommand.Name</code>="gluestreaming"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.</p></li>
    /// </ul>
    pub fn max_capacity(mut self, input: f64) -> Self {
        self.max_capacity = ::std::option::Option::Some(input);
        self
    }
    /// <p>For Glue version 1.0 or earlier jobs, using the standard worker type, the number of Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the <a href="https://aws.amazon.com/glue/pricing/"> Glue pricing page</a>.</p>
    /// <p>For Glue version 2.0+ jobs, you cannot specify a <code>Maximum capacity</code>. Instead, you should specify a <code>Worker type</code> and the <code>Number of workers</code>.</p>
    /// <p>Do not set <code>MaxCapacity</code> if using <code>WorkerType</code> and <code>NumberOfWorkers</code>.</p>
    /// <p>The value that can be allocated for <code>MaxCapacity</code> depends on whether you are running a Python shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:</p>
    /// <ul>
    /// <li>
    /// <p>When you specify a Python shell job (<code>JobCommand.Name</code>="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU.</p></li>
    /// <li>
    /// <p>When you specify an Apache Spark ETL job (<code>JobCommand.Name</code>="glueetl") or Apache Spark streaming ETL job (<code>JobCommand.Name</code>="gluestreaming"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.</p></li>
    /// </ul>
    pub fn set_max_capacity(mut self, input: ::std::option::Option<f64>) -> Self {
        self.max_capacity = input;
        self
    }
    /// <p>For Glue version 1.0 or earlier jobs, using the standard worker type, the number of Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the <a href="https://aws.amazon.com/glue/pricing/"> Glue pricing page</a>.</p>
    /// <p>For Glue version 2.0+ jobs, you cannot specify a <code>Maximum capacity</code>. Instead, you should specify a <code>Worker type</code> and the <code>Number of workers</code>.</p>
    /// <p>Do not set <code>MaxCapacity</code> if using <code>WorkerType</code> and <code>NumberOfWorkers</code>.</p>
    /// <p>The value that can be allocated for <code>MaxCapacity</code> depends on whether you are running a Python shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:</p>
    /// <ul>
    /// <li>
    /// <p>When you specify a Python shell job (<code>JobCommand.Name</code>="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU.</p></li>
    /// <li>
    /// <p>When you specify an Apache Spark ETL job (<code>JobCommand.Name</code>="glueetl") or Apache Spark streaming ETL job (<code>JobCommand.Name</code>="gluestreaming"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.</p></li>
    /// </ul>
    pub fn get_max_capacity(&self) -> &::std::option::Option<f64> {
        &self.max_capacity
    }
    /// <p>The name of the <code>SecurityConfiguration</code> structure to be used with this job.</p>
    pub fn security_configuration(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.security_configuration = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>The name of the <code>SecurityConfiguration</code> structure to be used with this job.</p>
    pub fn set_security_configuration(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.security_configuration = input;
        self
    }
    /// <p>The name of the <code>SecurityConfiguration</code> structure to be used with this job.</p>
    pub fn get_security_configuration(&self) -> &::std::option::Option<::std::string::String> {
        &self.security_configuration
    }
    /// Adds a key-value pair to `tags`.
    ///
    /// To override the contents of this collection use [`set_tags`](Self::set_tags).
    ///
    /// <p>The tags to use with this job. You may use tags to limit access to the job. For more information about tags in Glue, see <a href="https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html">Amazon Web Services Tags in Glue</a> in the developer guide.</p>
    pub fn tags(mut self, k: impl ::std::convert::Into<::std::string::String>, v: impl ::std::convert::Into<::std::string::String>) -> Self {
        let mut hash_map = self.tags.unwrap_or_default();
        hash_map.insert(k.into(), v.into());
        self.tags = ::std::option::Option::Some(hash_map);
        self
    }
    /// <p>The tags to use with this job. You may use tags to limit access to the job. For more information about tags in Glue, see <a href="https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html">Amazon Web Services Tags in Glue</a> in the developer guide.</p>
    pub fn set_tags(mut self, input: ::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>) -> Self {
        self.tags = input;
        self
    }
    /// <p>The tags to use with this job. You may use tags to limit access to the job. For more information about tags in Glue, see <a href="https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html">Amazon Web Services Tags in Glue</a> in the developer guide.</p>
    pub fn get_tags(&self) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, ::std::string::String>> {
        &self.tags
    }
    /// <p>Specifies configuration properties of a job notification.</p>
    pub fn notification_property(mut self, input: crate::types::NotificationProperty) -> Self {
        self.notification_property = ::std::option::Option::Some(input);
        self
    }
    /// <p>Specifies configuration properties of a job notification.</p>
    pub fn set_notification_property(mut self, input: ::std::option::Option<crate::types::NotificationProperty>) -> Self {
        self.notification_property = input;
        self
    }
    /// <p>Specifies configuration properties of a job notification.</p>
    pub fn get_notification_property(&self) -> &::std::option::Option<crate::types::NotificationProperty> {
        &self.notification_property
    }
    /// <p>In Spark jobs, <code>GlueVersion</code> determines the versions of Apache Spark and Python that Glue available in a job. The Python version indicates the version supported for jobs of type Spark.</p>
    /// <p>Ray jobs should set <code>GlueVersion</code> to <code>4.0</code> or greater. However, the versions of Ray, Python and additional libraries available in your Ray job are determined by the <code>Runtime</code> parameter of the Job command.</p>
    /// <p>For more information about the available Glue versions and corresponding Spark and Python versions, see <a href="https://docs.aws.amazon.com/glue/latest/dg/add-job.html">Glue version</a> in the developer guide.</p>
    /// <p>Jobs that are created without specifying a Glue version default to Glue 0.9.</p>
    pub fn glue_version(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.glue_version = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>In Spark jobs, <code>GlueVersion</code> determines the versions of Apache Spark and Python that Glue available in a job. The Python version indicates the version supported for jobs of type Spark.</p>
    /// <p>Ray jobs should set <code>GlueVersion</code> to <code>4.0</code> or greater. However, the versions of Ray, Python and additional libraries available in your Ray job are determined by the <code>Runtime</code> parameter of the Job command.</p>
    /// <p>For more information about the available Glue versions and corresponding Spark and Python versions, see <a href="https://docs.aws.amazon.com/glue/latest/dg/add-job.html">Glue version</a> in the developer guide.</p>
    /// <p>Jobs that are created without specifying a Glue version default to Glue 0.9.</p>
    pub fn set_glue_version(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.glue_version = input;
        self
    }
    /// <p>In Spark jobs, <code>GlueVersion</code> determines the versions of Apache Spark and Python that Glue available in a job. The Python version indicates the version supported for jobs of type Spark.</p>
    /// <p>Ray jobs should set <code>GlueVersion</code> to <code>4.0</code> or greater. However, the versions of Ray, Python and additional libraries available in your Ray job are determined by the <code>Runtime</code> parameter of the Job command.</p>
    /// <p>For more information about the available Glue versions and corresponding Spark and Python versions, see <a href="https://docs.aws.amazon.com/glue/latest/dg/add-job.html">Glue version</a> in the developer guide.</p>
    /// <p>Jobs that are created without specifying a Glue version default to Glue 0.9.</p>
    pub fn get_glue_version(&self) -> &::std::option::Option<::std::string::String> {
        &self.glue_version
    }
    /// <p>The number of workers of a defined <code>workerType</code> that are allocated when a job runs.</p>
    pub fn number_of_workers(mut self, input: i32) -> Self {
        self.number_of_workers = ::std::option::Option::Some(input);
        self
    }
    /// <p>The number of workers of a defined <code>workerType</code> that are allocated when a job runs.</p>
    pub fn set_number_of_workers(mut self, input: ::std::option::Option<i32>) -> Self {
        self.number_of_workers = input;
        self
    }
    /// <p>The number of workers of a defined <code>workerType</code> that are allocated when a job runs.</p>
    pub fn get_number_of_workers(&self) -> &::std::option::Option<i32> {
        &self.number_of_workers
    }
    /// <p>The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
    /// <ul>
    /// <li>
    /// <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p></li>
    /// <li>
    /// <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p></li>
    /// <li>
    /// <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p></li>
    /// <li>
    /// <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p></li>
    /// <li>
    /// <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p></li>
    /// <li>
    /// <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p></li>
    /// </ul>
    pub fn worker_type(mut self, input: crate::types::WorkerType) -> Self {
        self.worker_type = ::std::option::Option::Some(input);
        self
    }
    /// <p>The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
    /// <ul>
    /// <li>
    /// <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p></li>
    /// <li>
    /// <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p></li>
    /// <li>
    /// <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p></li>
    /// <li>
    /// <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p></li>
    /// <li>
    /// <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p></li>
    /// <li>
    /// <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p></li>
    /// </ul>
    pub fn set_worker_type(mut self, input: ::std::option::Option<crate::types::WorkerType>) -> Self {
        self.worker_type = input;
        self
    }
    /// <p>The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.</p>
    /// <ul>
    /// <li>
    /// <p>For the <code>G.1X</code> worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p></li>
    /// <li>
    /// <p>For the <code>G.2X</code> worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.</p></li>
    /// <li>
    /// <p>For the <code>G.4X</code> worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).</p></li>
    /// <li>
    /// <p>For the <code>G.8X</code> worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the <code>G.4X</code> worker type.</p></li>
    /// <li>
    /// <p>For the <code>G.025X</code> worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.</p></li>
    /// <li>
    /// <p>For the <code>Z.2X</code> worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.</p></li>
    /// </ul>
    pub fn get_worker_type(&self) -> &::std::option::Option<crate::types::WorkerType> {
        &self.worker_type
    }
    /// Adds a key-value pair to `code_gen_configuration_nodes`.
    ///
    /// To override the contents of this collection use [`set_code_gen_configuration_nodes`](Self::set_code_gen_configuration_nodes).
    ///
    /// <p>The representation of a directed acyclic graph on which both the Glue Studio visual component and Glue Studio code generation is based.</p>
    pub fn code_gen_configuration_nodes(
        mut self,
        k: impl ::std::convert::Into<::std::string::String>,
        v: crate::types::CodeGenConfigurationNode,
    ) -> Self {
        let mut hash_map = self.code_gen_configuration_nodes.unwrap_or_default();
        hash_map.insert(k.into(), v);
        self.code_gen_configuration_nodes = ::std::option::Option::Some(hash_map);
        self
    }
    /// <p>The representation of a directed acyclic graph on which both the Glue Studio visual component and Glue Studio code generation is based.</p>
    pub fn set_code_gen_configuration_nodes(
        mut self,
        input: ::std::option::Option<::std::collections::HashMap<::std::string::String, crate::types::CodeGenConfigurationNode>>,
    ) -> Self {
        self.code_gen_configuration_nodes = input;
        self
    }
    /// <p>The representation of a directed acyclic graph on which both the Glue Studio visual component and Glue Studio code generation is based.</p>
    pub fn get_code_gen_configuration_nodes(
        &self,
    ) -> &::std::option::Option<::std::collections::HashMap<::std::string::String, crate::types::CodeGenConfigurationNode>> {
        &self.code_gen_configuration_nodes
    }
    /// <p>Indicates whether the job is run with a standard or flexible execution class. The standard execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated resources.</p>
    /// <p>The flexible execution class is appropriate for time-insensitive jobs whose start and completion times may vary.</p>
    /// <p>Only jobs with Glue version 3.0 and above and command type <code>glueetl</code> will be allowed to set <code>ExecutionClass</code> to <code>FLEX</code>. The flexible execution class is available for Spark jobs.</p>
    pub fn execution_class(mut self, input: crate::types::ExecutionClass) -> Self {
        self.execution_class = ::std::option::Option::Some(input);
        self
    }
    /// <p>Indicates whether the job is run with a standard or flexible execution class. The standard execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated resources.</p>
    /// <p>The flexible execution class is appropriate for time-insensitive jobs whose start and completion times may vary.</p>
    /// <p>Only jobs with Glue version 3.0 and above and command type <code>glueetl</code> will be allowed to set <code>ExecutionClass</code> to <code>FLEX</code>. The flexible execution class is available for Spark jobs.</p>
    pub fn set_execution_class(mut self, input: ::std::option::Option<crate::types::ExecutionClass>) -> Self {
        self.execution_class = input;
        self
    }
    /// <p>Indicates whether the job is run with a standard or flexible execution class. The standard execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated resources.</p>
    /// <p>The flexible execution class is appropriate for time-insensitive jobs whose start and completion times may vary.</p>
    /// <p>Only jobs with Glue version 3.0 and above and command type <code>glueetl</code> will be allowed to set <code>ExecutionClass</code> to <code>FLEX</code>. The flexible execution class is available for Spark jobs.</p>
    pub fn get_execution_class(&self) -> &::std::option::Option<crate::types::ExecutionClass> {
        &self.execution_class
    }
    /// <p>The details for a source control configuration for a job, allowing synchronization of job artifacts to or from a remote repository.</p>
    pub fn source_control_details(mut self, input: crate::types::SourceControlDetails) -> Self {
        self.source_control_details = ::std::option::Option::Some(input);
        self
    }
    /// <p>The details for a source control configuration for a job, allowing synchronization of job artifacts to or from a remote repository.</p>
    pub fn set_source_control_details(mut self, input: ::std::option::Option<crate::types::SourceControlDetails>) -> Self {
        self.source_control_details = input;
        self
    }
    /// <p>The details for a source control configuration for a job, allowing synchronization of job artifacts to or from a remote repository.</p>
    pub fn get_source_control_details(&self) -> &::std::option::Option<crate::types::SourceControlDetails> {
        &self.source_control_details
    }
    /// <p>This field specifies a day of the week and hour for a maintenance window for streaming jobs. Glue periodically performs maintenance activities. During these maintenance windows, Glue will need to restart your streaming jobs.</p>
    /// <p>Glue will restart the job within 3 hours of the specified maintenance window. For instance, if you set up the maintenance window for Monday at 10:00AM GMT, your jobs will be restarted between 10:00AM GMT to 1:00PM GMT.</p>
    pub fn maintenance_window(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.maintenance_window = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>This field specifies a day of the week and hour for a maintenance window for streaming jobs. Glue periodically performs maintenance activities. During these maintenance windows, Glue will need to restart your streaming jobs.</p>
    /// <p>Glue will restart the job within 3 hours of the specified maintenance window. For instance, if you set up the maintenance window for Monday at 10:00AM GMT, your jobs will be restarted between 10:00AM GMT to 1:00PM GMT.</p>
    pub fn set_maintenance_window(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.maintenance_window = input;
        self
    }
    /// <p>This field specifies a day of the week and hour for a maintenance window for streaming jobs. Glue periodically performs maintenance activities. During these maintenance windows, Glue will need to restart your streaming jobs.</p>
    /// <p>Glue will restart the job within 3 hours of the specified maintenance window. For instance, if you set up the maintenance window for Monday at 10:00AM GMT, your jobs will be restarted between 10:00AM GMT to 1:00PM GMT.</p>
    pub fn get_maintenance_window(&self) -> &::std::option::Option<::std::string::String> {
        &self.maintenance_window
    }
    /// Consumes the builder and constructs a [`CreateJobInput`](crate::operation::create_job::CreateJobInput).
    pub fn build(self) -> ::std::result::Result<crate::operation::create_job::CreateJobInput, ::aws_smithy_types::error::operation::BuildError> {
        ::std::result::Result::Ok(crate::operation::create_job::CreateJobInput {
            name: self.name,
            job_mode: self.job_mode,
            description: self.description,
            log_uri: self.log_uri,
            role: self.role,
            execution_property: self.execution_property,
            command: self.command,
            default_arguments: self.default_arguments,
            non_overridable_arguments: self.non_overridable_arguments,
            connections: self.connections,
            max_retries: self.max_retries,
            allocated_capacity: self.allocated_capacity,
            timeout: self.timeout,
            max_capacity: self.max_capacity,
            security_configuration: self.security_configuration,
            tags: self.tags,
            notification_property: self.notification_property,
            glue_version: self.glue_version,
            number_of_workers: self.number_of_workers,
            worker_type: self.worker_type,
            code_gen_configuration_nodes: self.code_gen_configuration_nodes,
            execution_class: self.execution_class,
            source_control_details: self.source_control_details,
            maintenance_window: self.maintenance_window,
        })
    }
}
impl ::std::fmt::Debug for CreateJobInputBuilder {
    fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
        let mut formatter = f.debug_struct("CreateJobInputBuilder");
        formatter.field("name", &self.name);
        formatter.field("job_mode", &self.job_mode);
        formatter.field("description", &self.description);
        formatter.field("log_uri", &self.log_uri);
        formatter.field("role", &self.role);
        formatter.field("execution_property", &self.execution_property);
        formatter.field("command", &self.command);
        formatter.field("default_arguments", &self.default_arguments);
        formatter.field("non_overridable_arguments", &self.non_overridable_arguments);
        formatter.field("connections", &self.connections);
        formatter.field("max_retries", &self.max_retries);
        formatter.field("allocated_capacity", &self.allocated_capacity);
        formatter.field("timeout", &self.timeout);
        formatter.field("max_capacity", &self.max_capacity);
        formatter.field("security_configuration", &self.security_configuration);
        formatter.field("tags", &self.tags);
        formatter.field("notification_property", &self.notification_property);
        formatter.field("glue_version", &self.glue_version);
        formatter.field("number_of_workers", &self.number_of_workers);
        formatter.field("worker_type", &self.worker_type);
        formatter.field("code_gen_configuration_nodes", &"*** Sensitive Data Redacted ***");
        formatter.field("execution_class", &self.execution_class);
        formatter.field("source_control_details", &self.source_control_details);
        formatter.field("maintenance_window", &self.maintenance_window);
        formatter.finish()
    }
}