Module aws_sdk_comprehendmedical::types

source ·
Expand description

Data structures used by operation inputs/outputs.

Modules§

  • Builders
  • Error types that AWS Comprehend Medical can respond with.

Structs§

  • An extracted segment of the text that is an attribute of an entity, or otherwise related to an entity, such as the dosage of a medication taken. It contains information about the attribute such as id, begin and end offset within the input text, and the segment of the input text.

  • The number of characters in the input text to be analyzed.

  • Provides information for filtering a list of detection jobs.

  • Provides information about a detection job.

  • Provides information about an extracted medical entity.

  • The detected attributes that relate to an entity. This includes an extracted segment of the text that is an attribute of an entity, or otherwise related to an entity. InferICD10CM detects the following attributes: Direction, System, Organ or Site, and Acuity.

  • The ICD-10-CM concepts that the entity could refer to, along with a score indicating the likelihood of the match.

  • The collection of medical entities extracted from the input text and their associated information. For each entity, the response provides the entity text, the entity category, where the entity text begins and ends, and the level of confidence that Amazon Comprehend Medical has in the detection and analysis. Attributes and traits of the entity are also returned.

  • Contextual information for the entity. The traits recognized by InferICD10CM are DIAGNOSIS, SIGN, SYMPTOM, and NEGATION.

  • The input properties for an entities detection job. This includes the name of the S3 bucket and the path to the files to be analyzed.

  • The output properties for a detection job.

  • The extracted attributes that relate to this entity. The attributes recognized by InferRxNorm are DOSAGE, DURATION, FORM, FREQUENCY, RATE, ROUTE_OR_MODE.

  • The RxNorm concept that the entity could refer to, along with a score indicating the likelihood of the match.

  • The collection of medical entities extracted from the input text and their associated information. For each entity, the response provides the entity text, the entity category, where the entity text begins and ends, and the level of confidence that Amazon Comprehend Medical has in the detection and analysis. Attributes and traits of the entity are also returned.

  • The contextual information for the entity. InferRxNorm recognizes the trait NEGATION, which is any indication that the patient is not taking a medication.

  • The extracted attributes that relate to an entity. An extracted segment of the text that is an attribute of an entity, or otherwise related to an entity, such as the dosage of a medication taken.

  • The SNOMED-CT concepts that the entity could refer to, along with a score indicating the likelihood of the match.

  • The information about the revision of the SNOMED-CT ontology in the response. Specifically, the details include the SNOMED-CT edition, language, and version date.

  • The collection of medical entities extracted from the input text and their associated information. For each entity, the response provides the entity text, the entity category, where the entity text begins and ends, and the level of confidence that Amazon Comprehend Medical has in the detection and analysis. Attributes and traits of the entity are also returned.

  • Contextual information for an entity.

  • Provides contextual information about the extracted entity.

  • An attribute that was extracted, but Amazon Comprehend Medical was unable to relate to an entity.

Enums§

  • When writing a match expression against AttributeName, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against EntitySubType, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against EntityType, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against Icd10CmAttributeType, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against Icd10CmEntityCategory, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against Icd10CmEntityType, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against Icd10CmRelationshipType, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against Icd10CmTraitName, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against JobStatus, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against LanguageCode, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against RelationshipType, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against RxNormAttributeType, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against RxNormEntityCategory, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against RxNormEntityType, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against RxNormTraitName, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against SnomedctAttributeType, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against SnomedctEntityCategory, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against SnomedctEntityType, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against SnomedctRelationshipType, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.
  • When writing a match expression against SnomedctTraitName, it is important to ensure your code is forward-compatible. That is, if a match arm handles a case for a feature that is supported by the service but has not been represented as an enum variant in a current version of SDK, your code should continue to work when you upgrade SDK to a future version in which the enum does include a variant for that feature.