pub struct Builder { /* private fields */ }Expand description
A builder for ClassifierEvaluationMetrics.
Implementations§
source§impl Builder
impl Builder
sourcepub fn accuracy(self, input: f64) -> Self
pub fn accuracy(self, input: f64) -> Self
The fraction of the labels that were correct recognized. It is computed by dividing the number of labels in the test documents that were correctly recognized by the total number of labels in the test documents.
sourcepub fn set_accuracy(self, input: Option<f64>) -> Self
pub fn set_accuracy(self, input: Option<f64>) -> Self
The fraction of the labels that were correct recognized. It is computed by dividing the number of labels in the test documents that were correctly recognized by the total number of labels in the test documents.
Examples found in repository?
10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145
pub(crate) fn deser_structure_crate_model_classifier_evaluation_metrics<'a, I>(
tokens: &mut std::iter::Peekable<I>,
) -> Result<
Option<crate::model::ClassifierEvaluationMetrics>,
aws_smithy_json::deserialize::error::DeserializeError,
>
where
I: Iterator<
Item = Result<
aws_smithy_json::deserialize::Token<'a>,
aws_smithy_json::deserialize::error::DeserializeError,
>,
>,
{
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::ValueNull { .. }) => Ok(None),
Some(aws_smithy_json::deserialize::Token::StartObject { .. }) => {
#[allow(unused_mut)]
let mut builder = crate::model::classifier_evaluation_metrics::Builder::default();
loop {
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::EndObject { .. }) => break,
Some(aws_smithy_json::deserialize::Token::ObjectKey { key, .. }) => {
match key.to_unescaped()?.as_ref() {
"Accuracy" => {
builder = builder.set_accuracy(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Precision" => {
builder = builder.set_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Recall" => {
builder = builder.set_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"F1Score" => {
builder = builder.set_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroPrecision" => {
builder = builder.set_micro_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroRecall" => {
builder = builder.set_micro_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroF1Score" => {
builder = builder.set_micro_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"HammingLoss" => {
builder = builder.set_hamming_loss(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
_ => aws_smithy_json::deserialize::token::skip_value(tokens)?,
}
}
other => {
return Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(format!(
"expected object key or end object, found: {:?}",
other
)),
)
}
}
}
Ok(Some(builder.build()))
}
_ => Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(
"expected start object or null",
),
),
}
}sourcepub fn precision(self, input: f64) -> Self
pub fn precision(self, input: f64) -> Self
A measure of the usefulness of the classifier results in the test data. High precision means that the classifier returned substantially more relevant results than irrelevant ones.
sourcepub fn set_precision(self, input: Option<f64>) -> Self
pub fn set_precision(self, input: Option<f64>) -> Self
A measure of the usefulness of the classifier results in the test data. High precision means that the classifier returned substantially more relevant results than irrelevant ones.
Examples found in repository?
10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145
pub(crate) fn deser_structure_crate_model_classifier_evaluation_metrics<'a, I>(
tokens: &mut std::iter::Peekable<I>,
) -> Result<
Option<crate::model::ClassifierEvaluationMetrics>,
aws_smithy_json::deserialize::error::DeserializeError,
>
where
I: Iterator<
Item = Result<
aws_smithy_json::deserialize::Token<'a>,
aws_smithy_json::deserialize::error::DeserializeError,
>,
>,
{
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::ValueNull { .. }) => Ok(None),
Some(aws_smithy_json::deserialize::Token::StartObject { .. }) => {
#[allow(unused_mut)]
let mut builder = crate::model::classifier_evaluation_metrics::Builder::default();
loop {
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::EndObject { .. }) => break,
Some(aws_smithy_json::deserialize::Token::ObjectKey { key, .. }) => {
match key.to_unescaped()?.as_ref() {
"Accuracy" => {
builder = builder.set_accuracy(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Precision" => {
builder = builder.set_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Recall" => {
builder = builder.set_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"F1Score" => {
builder = builder.set_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroPrecision" => {
builder = builder.set_micro_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroRecall" => {
builder = builder.set_micro_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroF1Score" => {
builder = builder.set_micro_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"HammingLoss" => {
builder = builder.set_hamming_loss(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
_ => aws_smithy_json::deserialize::token::skip_value(tokens)?,
}
}
other => {
return Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(format!(
"expected object key or end object, found: {:?}",
other
)),
)
}
}
}
Ok(Some(builder.build()))
}
_ => Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(
"expected start object or null",
),
),
}
}sourcepub fn recall(self, input: f64) -> Self
pub fn recall(self, input: f64) -> Self
A measure of how complete the classifier results are for the test data. High recall means that the classifier returned most of the relevant results.
sourcepub fn set_recall(self, input: Option<f64>) -> Self
pub fn set_recall(self, input: Option<f64>) -> Self
A measure of how complete the classifier results are for the test data. High recall means that the classifier returned most of the relevant results.
Examples found in repository?
10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145
pub(crate) fn deser_structure_crate_model_classifier_evaluation_metrics<'a, I>(
tokens: &mut std::iter::Peekable<I>,
) -> Result<
Option<crate::model::ClassifierEvaluationMetrics>,
aws_smithy_json::deserialize::error::DeserializeError,
>
where
I: Iterator<
Item = Result<
aws_smithy_json::deserialize::Token<'a>,
aws_smithy_json::deserialize::error::DeserializeError,
>,
>,
{
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::ValueNull { .. }) => Ok(None),
Some(aws_smithy_json::deserialize::Token::StartObject { .. }) => {
#[allow(unused_mut)]
let mut builder = crate::model::classifier_evaluation_metrics::Builder::default();
loop {
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::EndObject { .. }) => break,
Some(aws_smithy_json::deserialize::Token::ObjectKey { key, .. }) => {
match key.to_unescaped()?.as_ref() {
"Accuracy" => {
builder = builder.set_accuracy(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Precision" => {
builder = builder.set_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Recall" => {
builder = builder.set_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"F1Score" => {
builder = builder.set_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroPrecision" => {
builder = builder.set_micro_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroRecall" => {
builder = builder.set_micro_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroF1Score" => {
builder = builder.set_micro_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"HammingLoss" => {
builder = builder.set_hamming_loss(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
_ => aws_smithy_json::deserialize::token::skip_value(tokens)?,
}
}
other => {
return Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(format!(
"expected object key or end object, found: {:?}",
other
)),
)
}
}
}
Ok(Some(builder.build()))
}
_ => Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(
"expected start object or null",
),
),
}
}sourcepub fn f1_score(self, input: f64) -> Self
pub fn f1_score(self, input: f64) -> Self
A measure of how accurate the classifier results are for the test data. It is derived from the Precision and Recall values. The F1Score is the harmonic average of the two scores. The highest score is 1, and the worst score is 0.
sourcepub fn set_f1_score(self, input: Option<f64>) -> Self
pub fn set_f1_score(self, input: Option<f64>) -> Self
A measure of how accurate the classifier results are for the test data. It is derived from the Precision and Recall values. The F1Score is the harmonic average of the two scores. The highest score is 1, and the worst score is 0.
Examples found in repository?
10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145
pub(crate) fn deser_structure_crate_model_classifier_evaluation_metrics<'a, I>(
tokens: &mut std::iter::Peekable<I>,
) -> Result<
Option<crate::model::ClassifierEvaluationMetrics>,
aws_smithy_json::deserialize::error::DeserializeError,
>
where
I: Iterator<
Item = Result<
aws_smithy_json::deserialize::Token<'a>,
aws_smithy_json::deserialize::error::DeserializeError,
>,
>,
{
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::ValueNull { .. }) => Ok(None),
Some(aws_smithy_json::deserialize::Token::StartObject { .. }) => {
#[allow(unused_mut)]
let mut builder = crate::model::classifier_evaluation_metrics::Builder::default();
loop {
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::EndObject { .. }) => break,
Some(aws_smithy_json::deserialize::Token::ObjectKey { key, .. }) => {
match key.to_unescaped()?.as_ref() {
"Accuracy" => {
builder = builder.set_accuracy(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Precision" => {
builder = builder.set_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Recall" => {
builder = builder.set_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"F1Score" => {
builder = builder.set_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroPrecision" => {
builder = builder.set_micro_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroRecall" => {
builder = builder.set_micro_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroF1Score" => {
builder = builder.set_micro_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"HammingLoss" => {
builder = builder.set_hamming_loss(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
_ => aws_smithy_json::deserialize::token::skip_value(tokens)?,
}
}
other => {
return Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(format!(
"expected object key or end object, found: {:?}",
other
)),
)
}
}
}
Ok(Some(builder.build()))
}
_ => Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(
"expected start object or null",
),
),
}
}sourcepub fn micro_precision(self, input: f64) -> Self
pub fn micro_precision(self, input: f64) -> Self
A measure of the usefulness of the recognizer results in the test data. High precision means that the recognizer returned substantially more relevant results than irrelevant ones. Unlike the Precision metric which comes from averaging the precision of all available labels, this is based on the overall score of all precision scores added together.
sourcepub fn set_micro_precision(self, input: Option<f64>) -> Self
pub fn set_micro_precision(self, input: Option<f64>) -> Self
A measure of the usefulness of the recognizer results in the test data. High precision means that the recognizer returned substantially more relevant results than irrelevant ones. Unlike the Precision metric which comes from averaging the precision of all available labels, this is based on the overall score of all precision scores added together.
Examples found in repository?
10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145
pub(crate) fn deser_structure_crate_model_classifier_evaluation_metrics<'a, I>(
tokens: &mut std::iter::Peekable<I>,
) -> Result<
Option<crate::model::ClassifierEvaluationMetrics>,
aws_smithy_json::deserialize::error::DeserializeError,
>
where
I: Iterator<
Item = Result<
aws_smithy_json::deserialize::Token<'a>,
aws_smithy_json::deserialize::error::DeserializeError,
>,
>,
{
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::ValueNull { .. }) => Ok(None),
Some(aws_smithy_json::deserialize::Token::StartObject { .. }) => {
#[allow(unused_mut)]
let mut builder = crate::model::classifier_evaluation_metrics::Builder::default();
loop {
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::EndObject { .. }) => break,
Some(aws_smithy_json::deserialize::Token::ObjectKey { key, .. }) => {
match key.to_unescaped()?.as_ref() {
"Accuracy" => {
builder = builder.set_accuracy(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Precision" => {
builder = builder.set_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Recall" => {
builder = builder.set_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"F1Score" => {
builder = builder.set_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroPrecision" => {
builder = builder.set_micro_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroRecall" => {
builder = builder.set_micro_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroF1Score" => {
builder = builder.set_micro_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"HammingLoss" => {
builder = builder.set_hamming_loss(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
_ => aws_smithy_json::deserialize::token::skip_value(tokens)?,
}
}
other => {
return Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(format!(
"expected object key or end object, found: {:?}",
other
)),
)
}
}
}
Ok(Some(builder.build()))
}
_ => Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(
"expected start object or null",
),
),
}
}sourcepub fn micro_recall(self, input: f64) -> Self
pub fn micro_recall(self, input: f64) -> Self
A measure of how complete the classifier results are for the test data. High recall means that the classifier returned most of the relevant results. Specifically, this indicates how many of the correct categories in the text that the model can predict. It is a percentage of correct categories in the text that can found. Instead of averaging the recall scores of all labels (as with Recall), micro Recall is based on the overall score of all recall scores added together.
sourcepub fn set_micro_recall(self, input: Option<f64>) -> Self
pub fn set_micro_recall(self, input: Option<f64>) -> Self
A measure of how complete the classifier results are for the test data. High recall means that the classifier returned most of the relevant results. Specifically, this indicates how many of the correct categories in the text that the model can predict. It is a percentage of correct categories in the text that can found. Instead of averaging the recall scores of all labels (as with Recall), micro Recall is based on the overall score of all recall scores added together.
Examples found in repository?
10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145
pub(crate) fn deser_structure_crate_model_classifier_evaluation_metrics<'a, I>(
tokens: &mut std::iter::Peekable<I>,
) -> Result<
Option<crate::model::ClassifierEvaluationMetrics>,
aws_smithy_json::deserialize::error::DeserializeError,
>
where
I: Iterator<
Item = Result<
aws_smithy_json::deserialize::Token<'a>,
aws_smithy_json::deserialize::error::DeserializeError,
>,
>,
{
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::ValueNull { .. }) => Ok(None),
Some(aws_smithy_json::deserialize::Token::StartObject { .. }) => {
#[allow(unused_mut)]
let mut builder = crate::model::classifier_evaluation_metrics::Builder::default();
loop {
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::EndObject { .. }) => break,
Some(aws_smithy_json::deserialize::Token::ObjectKey { key, .. }) => {
match key.to_unescaped()?.as_ref() {
"Accuracy" => {
builder = builder.set_accuracy(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Precision" => {
builder = builder.set_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Recall" => {
builder = builder.set_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"F1Score" => {
builder = builder.set_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroPrecision" => {
builder = builder.set_micro_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroRecall" => {
builder = builder.set_micro_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroF1Score" => {
builder = builder.set_micro_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"HammingLoss" => {
builder = builder.set_hamming_loss(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
_ => aws_smithy_json::deserialize::token::skip_value(tokens)?,
}
}
other => {
return Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(format!(
"expected object key or end object, found: {:?}",
other
)),
)
}
}
}
Ok(Some(builder.build()))
}
_ => Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(
"expected start object or null",
),
),
}
}sourcepub fn micro_f1_score(self, input: f64) -> Self
pub fn micro_f1_score(self, input: f64) -> Self
A measure of how accurate the classifier results are for the test data. It is a combination of the Micro Precision and Micro Recall values. The Micro F1Score is the harmonic mean of the two scores. The highest score is 1, and the worst score is 0.
sourcepub fn set_micro_f1_score(self, input: Option<f64>) -> Self
pub fn set_micro_f1_score(self, input: Option<f64>) -> Self
A measure of how accurate the classifier results are for the test data. It is a combination of the Micro Precision and Micro Recall values. The Micro F1Score is the harmonic mean of the two scores. The highest score is 1, and the worst score is 0.
Examples found in repository?
10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145
pub(crate) fn deser_structure_crate_model_classifier_evaluation_metrics<'a, I>(
tokens: &mut std::iter::Peekable<I>,
) -> Result<
Option<crate::model::ClassifierEvaluationMetrics>,
aws_smithy_json::deserialize::error::DeserializeError,
>
where
I: Iterator<
Item = Result<
aws_smithy_json::deserialize::Token<'a>,
aws_smithy_json::deserialize::error::DeserializeError,
>,
>,
{
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::ValueNull { .. }) => Ok(None),
Some(aws_smithy_json::deserialize::Token::StartObject { .. }) => {
#[allow(unused_mut)]
let mut builder = crate::model::classifier_evaluation_metrics::Builder::default();
loop {
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::EndObject { .. }) => break,
Some(aws_smithy_json::deserialize::Token::ObjectKey { key, .. }) => {
match key.to_unescaped()?.as_ref() {
"Accuracy" => {
builder = builder.set_accuracy(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Precision" => {
builder = builder.set_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Recall" => {
builder = builder.set_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"F1Score" => {
builder = builder.set_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroPrecision" => {
builder = builder.set_micro_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroRecall" => {
builder = builder.set_micro_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroF1Score" => {
builder = builder.set_micro_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"HammingLoss" => {
builder = builder.set_hamming_loss(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
_ => aws_smithy_json::deserialize::token::skip_value(tokens)?,
}
}
other => {
return Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(format!(
"expected object key or end object, found: {:?}",
other
)),
)
}
}
}
Ok(Some(builder.build()))
}
_ => Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(
"expected start object or null",
),
),
}
}sourcepub fn hamming_loss(self, input: f64) -> Self
pub fn hamming_loss(self, input: f64) -> Self
Indicates the fraction of labels that are incorrectly predicted. Also seen as the fraction of wrong labels compared to the total number of labels. Scores closer to zero are better.
sourcepub fn set_hamming_loss(self, input: Option<f64>) -> Self
pub fn set_hamming_loss(self, input: Option<f64>) -> Self
Indicates the fraction of labels that are incorrectly predicted. Also seen as the fraction of wrong labels compared to the total number of labels. Scores closer to zero are better.
Examples found in repository?
10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145
pub(crate) fn deser_structure_crate_model_classifier_evaluation_metrics<'a, I>(
tokens: &mut std::iter::Peekable<I>,
) -> Result<
Option<crate::model::ClassifierEvaluationMetrics>,
aws_smithy_json::deserialize::error::DeserializeError,
>
where
I: Iterator<
Item = Result<
aws_smithy_json::deserialize::Token<'a>,
aws_smithy_json::deserialize::error::DeserializeError,
>,
>,
{
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::ValueNull { .. }) => Ok(None),
Some(aws_smithy_json::deserialize::Token::StartObject { .. }) => {
#[allow(unused_mut)]
let mut builder = crate::model::classifier_evaluation_metrics::Builder::default();
loop {
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::EndObject { .. }) => break,
Some(aws_smithy_json::deserialize::Token::ObjectKey { key, .. }) => {
match key.to_unescaped()?.as_ref() {
"Accuracy" => {
builder = builder.set_accuracy(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Precision" => {
builder = builder.set_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Recall" => {
builder = builder.set_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"F1Score" => {
builder = builder.set_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroPrecision" => {
builder = builder.set_micro_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroRecall" => {
builder = builder.set_micro_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroF1Score" => {
builder = builder.set_micro_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"HammingLoss" => {
builder = builder.set_hamming_loss(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
_ => aws_smithy_json::deserialize::token::skip_value(tokens)?,
}
}
other => {
return Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(format!(
"expected object key or end object, found: {:?}",
other
)),
)
}
}
}
Ok(Some(builder.build()))
}
_ => Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(
"expected start object or null",
),
),
}
}sourcepub fn build(self) -> ClassifierEvaluationMetrics
pub fn build(self) -> ClassifierEvaluationMetrics
Consumes the builder and constructs a ClassifierEvaluationMetrics.
Examples found in repository?
10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145
pub(crate) fn deser_structure_crate_model_classifier_evaluation_metrics<'a, I>(
tokens: &mut std::iter::Peekable<I>,
) -> Result<
Option<crate::model::ClassifierEvaluationMetrics>,
aws_smithy_json::deserialize::error::DeserializeError,
>
where
I: Iterator<
Item = Result<
aws_smithy_json::deserialize::Token<'a>,
aws_smithy_json::deserialize::error::DeserializeError,
>,
>,
{
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::ValueNull { .. }) => Ok(None),
Some(aws_smithy_json::deserialize::Token::StartObject { .. }) => {
#[allow(unused_mut)]
let mut builder = crate::model::classifier_evaluation_metrics::Builder::default();
loop {
match tokens.next().transpose()? {
Some(aws_smithy_json::deserialize::Token::EndObject { .. }) => break,
Some(aws_smithy_json::deserialize::Token::ObjectKey { key, .. }) => {
match key.to_unescaped()?.as_ref() {
"Accuracy" => {
builder = builder.set_accuracy(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Precision" => {
builder = builder.set_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"Recall" => {
builder = builder.set_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"F1Score" => {
builder = builder.set_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroPrecision" => {
builder = builder.set_micro_precision(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroRecall" => {
builder = builder.set_micro_recall(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"MicroF1Score" => {
builder = builder.set_micro_f1_score(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
"HammingLoss" => {
builder = builder.set_hamming_loss(
aws_smithy_json::deserialize::token::expect_number_or_null(
tokens.next(),
)?
.map(|v| v.to_f64_lossy()),
);
}
_ => aws_smithy_json::deserialize::token::skip_value(tokens)?,
}
}
other => {
return Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(format!(
"expected object key or end object, found: {:?}",
other
)),
)
}
}
}
Ok(Some(builder.build()))
}
_ => Err(
aws_smithy_json::deserialize::error::DeserializeError::custom(
"expected start object or null",
),
),
}
}