1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
use std::collections::BTreeMap;
use std::future::poll_fn;
use std::io;
use std::mem;
use std::os::unix::io::RawFd;
use std::sync::{
    atomic::{AtomicUsize, Ordering},
    Arc, Mutex, MutexGuard, OnceLock,
};
use std::task::{Context, Poll, Waker};
use std::thread;
use std::time::{Duration, Instant};

use slab::Slab;

use super::poller::Poller;
use crate::parking;
use crate::queue::Queue;

const DEFAULT_TIME_OP_SIZE: usize = 1000;
const READ: usize = 0;
const WRITE: usize = 1;

pub(crate) struct Reactor {
    block_on_count: AtomicUsize,
    unparker: parking::Unparker,
    ticker: AtomicUsize,
    poller: Poller,
    sources: Mutex<Slab<Arc<Source>>>,
    lock: Mutex<()>,
    timer_ops: Queue<TimerOp>,
    timers: Mutex<BTreeMap<(Instant, usize), Waker>>,
}

/// A single timer operation.
enum TimerOp {
    Insert(Instant, usize, Waker),
    Remove(Instant, usize),
}

impl Drop for Reactor {
    fn drop(&mut self) {
        self.unpark();
    }
}

impl Reactor {
    fn ticker(&self) -> usize {
        self.ticker.load(Ordering::SeqCst)
    }

    pub fn unpark(&self) -> bool {
        self.unparker.unpark()
    }

    pub fn add_block_on_count(&self) {
        self.block_on_count.fetch_add(1, Ordering::Relaxed);
    }

    pub fn sub_block_on_count(&self) {
        self.block_on_count.fetch_sub(1, Ordering::Relaxed);
    }

    pub fn get() -> &'static Reactor {
        static REACTOR: OnceLock<Reactor> = OnceLock::new();
        REACTOR.get_or_init(|| {
            let (parker, unparker) = parking::pair();

            thread::spawn(move || {
                // The last observed reactor tick.
                let mut last_tick = 0;
                // Number of sleeps since this thread has called `react()`.
                let mut sleeps = 0u64;

                loop {
                    let tick = Reactor::get().ticker();

                    if last_tick == tick {
                        let reactor_lock = if sleeps >= 10 {
                            // If no new ticks have occurred for a while, stop sleeping and spinning in
                            // this loop and just block on the reactor lock.
                            Some(Reactor::get().lock())
                        } else {
                            Reactor::get().try_lock()
                        };

                        if let Some(reactor_lock) = reactor_lock {
                            reactor_lock.react(None).ok();
                            last_tick = Reactor::get().ticker();
                            sleeps = 0;
                        }
                    } else {
                        last_tick = tick;
                    }

                    if Reactor::get().block_on_count.load(Ordering::Relaxed) > 0 {
                        // Exponential backoff from 50us to 10ms.
                        let delay_us = [50, 75, 100, 250, 500, 750, 1000, 2500, 5000]
                            .get(sleeps as usize)
                            .unwrap_or(&10_000);

                        if parker.park_timeout(Some(Duration::from_micros(*delay_us))) {
                            // If notified before timeout, reset the last tick and the sleep counter.
                            last_tick = Reactor::get().ticker();
                            sleeps = 0;
                        } else {
                            sleeps += 1;
                        }
                    }
                }
            });

            Reactor {
                unparker,
                block_on_count: AtomicUsize::new(0),
                ticker: AtomicUsize::new(0),
                poller: Poller::new(),
                sources: Mutex::new(Slab::new()),
                lock: Mutex::new(()),
                timer_ops: Queue::bound(DEFAULT_TIME_OP_SIZE),
                timers: Mutex::new(BTreeMap::new()),
            }
        })
    }

    pub fn try_lock(&self) -> Option<ReactorLock<'_>> {
        self.lock.try_lock().ok().map(|_guard| ReactorLock {
            reactor: self,
            _guard,
        })
    }

    pub fn lock(&self) -> ReactorLock<'_> {
        let _guard = self.lock.lock().unwrap();
        ReactorLock {
            reactor: self,
            _guard,
        }
    }

    fn react(&self, timeout: Option<Duration>) -> io::Result<()> {
        let mut wakers = Vec::new();
        // compute the timeout for blocking on I/O events.
        let next_timer = self.process_timers(&mut wakers);

        // compute the timeout for blocking on I/O events.
        let timeout = match (next_timer, timeout) {
            (None, None) => None,
            (Some(t), None) | (None, Some(t)) => Some(t),
            (Some(a), Some(b)) => Some(a.min(b)),
        };

        // Bump the ticker before polling I/O.
        let tick = self.ticker.fetch_add(1, Ordering::SeqCst).wrapping_add(1);

        let res = match self.poller.wait(timeout) {
            Ok(events) if events.is_empty() => {
                if timeout != Some(Duration::from_secs(0)) {
                    // The non-zero timeout was hit so fire ready timers.
                    self.process_timers(&mut wakers);
                }
                Ok(())
            }
            Ok(events) => {
                let sources = self.sources.lock().unwrap();

                for ev in events.into_iter() {
                    if let Some(source) = sources.get(ev.key) {
                        let mut states = source.states.lock().unwrap();

                        // Wake readers if a readability event was emitted.
                        if ev.readable {
                            states[READ].tick = tick + 1;
                            wakers.append(&mut states[READ].wakers);
                        }

                        // Wake writers if a writability event was emitted.
                        if ev.writable {
                            states[WRITE].tick = tick + 1;
                            wakers.append(&mut states[WRITE].wakers);
                        }
                        if !(states[WRITE].wakers.is_empty() && states[READ].wakers.is_empty()) {
                            self.poller.interest(
                                source.raw,
                                source.key,
                                !states[READ].wakers.is_empty(),
                                !states[WRITE].wakers.is_empty(),
                            )?;
                        }
                    }
                }
                Ok(())
            }
            // The syscall was interrupted.
            Err(err) if err.kind() == io::ErrorKind::Interrupted => Ok(()),
            // An actual error occureed.
            Err(err) => Err(err),
        };

        // Wake up ready tasks.
        for waker in wakers {
            waker.wake();
        }
        res
    }

    fn interest(&self, raw: RawFd, key: usize, read: bool, write: bool) -> io::Result<()> {
        self.poller.interest(raw, key, read, write)
    }

    pub fn insert_io(&self, raw: RawFd) -> io::Result<Arc<Source>> {
        self.poller.insert(raw)?;
        let mut sources = self.sources.lock().unwrap();
        let entry = sources.vacant_entry();
        let key = entry.key();
        let source = Arc::new(Source {
            raw,
            key,
            states: Default::default(),
        });
        entry.insert(source.clone());
        Ok(source)
    }

    pub fn remove_io(&self, source: &Source) -> io::Result<()> {
        let mut sources = self.sources.lock().unwrap();
        sources.remove(source.key);
        self.poller.remove(source.raw)
    }

    pub fn insert_timer(&self, when: Instant, waker: &Waker) -> usize {
        // Generate a new timer ID.
        static ID_GENERATOR: AtomicUsize = AtomicUsize::new(1);
        let id = ID_GENERATOR.fetch_add(1, Ordering::Relaxed);
        while self
            .timer_ops
            .push(TimerOp::Insert(when, id, waker.clone()))
            .is_err()
        {
            let mut timers = self.timers.lock().unwrap();
            self.process_timer_ops(&mut timers);
        }
        self.notify();
        id
    }

    pub fn remove_timer(&self, when: Instant, id: usize) {
        while self.timer_ops.push(TimerOp::Remove(when, id)).is_err() {
            let mut timers = self.timers.lock().unwrap();
            self.process_timer_ops(&mut timers);
        }
    }

    fn process_timers(&self, wakers: &mut Vec<Waker>) -> Option<Duration> {
        let mut timers = self.timers.lock().unwrap();
        self.process_timer_ops(&mut timers);
        let now = Instant::now();

        // Split timers into ready and pending timers.
        let pending = timers.split_off(&(now, 0));
        let ready = mem::replace(&mut *timers, pending);
        let dur = if ready.is_empty() {
            timers
                .keys()
                .next()
                .map(|(when, _)| when.saturating_duration_since(now))
        } else {
            Some(Duration::from_secs(0))
        };
        drop(timers);
        for (_, waker) in ready {
            wakers.push(waker);
        }
        dur
    }

    fn process_timer_ops(&self, timers: &mut MutexGuard<'_, BTreeMap<(Instant, usize), Waker>>) {
        for _ in 0..self.timer_ops.capacity() {
            match self.timer_ops.pop() {
                Ok(TimerOp::Insert(when, id, waker)) => {
                    timers.insert((when, id), waker);
                }
                Ok(TimerOp::Remove(when, id)) => {
                    timers.remove(&(when, id));
                }
                Err(_) => break,
            }
        }
    }

    pub fn notify(&self) {
        self.poller.notify().expect("failed to notify reactor");
    }
}

/// A lock on the reactor.
pub(crate) struct ReactorLock<'a> {
    reactor: &'a Reactor,
    _guard: MutexGuard<'a, ()>,
}

impl<'a> ReactorLock<'a> {
    pub fn react(&self, timeout: Option<Duration>) -> io::Result<()> {
        self.reactor.react(timeout)
    }
}

/// A registered source of I/O events.
#[derive(Debug)]
pub(crate) struct Source {
    /// Raw file descriptor on Unix platforms.
    pub raw: RawFd,
    /// The key of this source obtained during registration.
    key: usize,
    /// Tasks interested in events on this source.
    states: Mutex<[State; 2]>,
}

#[derive(Default, Debug)]
struct State {
    /// Tasks waiting for the next event.
    wakers: Vec<Waker>,
    /// Last reactor tick that delivered an event.
    tick: usize,
    /// Ticks remembered by `poll_readable()` or `poll_writable()`.
    ticks: Option<(usize, usize)>,
}

impl Source {
    pub async fn readable(&self) -> io::Result<()> {
        poll_fn(|cx| self.poll_ready(READ, cx)).await
    }

    pub async fn writable(&self) -> io::Result<()> {
        poll_fn(|cx| self.poll_ready(WRITE, cx)).await
    }

    pub fn poll_readable(&self, cx: &Context) -> Poll<io::Result<()>> {
        self.poll_ready(READ, cx)
    }

    pub fn poll_writable(&self, cx: &Context) -> Poll<io::Result<()>> {
        self.poll_ready(WRITE, cx)
    }

    pub fn poll_ready(&self, op: usize, cx: &Context) -> Poll<io::Result<()>> {
        let mut states = self.states.lock().unwrap();
        if let Some((a, b)) = states[op].ticks {
            if states[op].tick != a && states[op].tick != b {
                states[op].ticks = None;
                return Poll::Ready(Ok(()));
            }
        }
        let was_empty = states[op].wakers.is_empty();
        if states[op].wakers.iter().all(|w| !w.will_wake(cx.waker())) {
            states[op].wakers.push(cx.waker().clone());
        }
        if states[op].ticks.is_none() {
            states[op].ticks = Some((
                Reactor::get().ticker.load(Ordering::SeqCst),
                states[op].tick,
            ));
        }
        if was_empty {
            // no wakers, register in reactor
            Reactor::get().interest(
                self.raw,
                self.key,
                !states[READ].wakers.is_empty(),
                !states[WRITE].wakers.is_empty(),
            )?;
        }
        Poll::Pending
    }
}