1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
//! Allwinner FEL library.

#![cfg_attr(feature = "cargo-clippy", deny(clippy))]
#![forbid(anonymous_parameters)]
#![cfg_attr(feature = "cargo-clippy", warn(clippy_pedantic))]
#![deny(
    variant_size_differences, unused_results, unused_qualifications, unused_import_braces,
    unsafe_code, trivial_numeric_casts, trivial_casts, missing_docs, unused_extern_crates,
    missing_debug_implementations, missing_copy_implementations
)]
#![cfg_attr(feature = "cargo-clippy", allow(similar_names, cast_possible_truncation))]
// Allowing these for now.
// #![cfg_attr(
//     feature = "cargo-clippy",
//     allow(
//         stutter, similar_names, cast_possible_truncation, cast_possible_wrap, cast_precision_loss,
//         cast_sign_loss
//     )
// )]

#[macro_use]
extern crate failure;
extern crate byteorder;
extern crate libusb;

use std::io;
use std::ops::Deref;
use std::time::Duration;
use std::{fmt, u32};

use libusb::DeviceHandle;

use byteorder::{ByteOrder, LittleEndian};
use failure::{Error, Fail, ResultExt};

mod soc;
#[cfg(feature = "uboot")]
mod uboot;

/// FEL errors.
#[derive(Debug, Fail, PartialEq)]
pub enum FelError {
    /// USB response error.
    #[fail(display = "invalid response: expected '{}', found: {}", expected, found)]
    Response {
        /// Expected string.
        expected: &'static str,
        /// Found string.
        found: String,
    },
    /// Unsupported device ID.
    #[fail(display = "unsupported device ID: {:#010x}", id)]
    UnsupportedDevId {
        /// Unsupported device ID.
        id: u32,
    },
    /// SPL header error.
    #[fail(display = "SPL header error: {}", msg)]
    SPLHeader {
        /// SPL header error message.
        msg: &'static str,
    },
}

/// Maximum size of *SPL*, at the same time this is the start offset of the main *U-Boot* image
/// within `u-boot-sunxi-with-spl.bin`.
#[cfg(feature = "uboot")]
pub const SPL_LEN_LIMIT: u32 = 0x8000;

/// USB timeout (in seconds).
const USB_TIMEOUT: u64 = 10;
/// `AW_USB_MAX_BULK_SEND` and the timeout constant `USB_TIMEOUT` are related. Both need to be
/// selected in a way that transferring the maximum chunk size with (*SoC*-specific) slow transfer
/// speed won't time out.
///
/// The *512 KiB* here are chosen based on the assumption that we want a 10 seconds timeout, and
/// "slow" transfers take place at approx. *64 KiB/sec*, so we can expect the maximum chunk being
/// transmitted within 8 seconds or less.
const AW_USB_MAX_BULK_SEND: usize = 512 * 1024; //512 KiB per bulk request

/// Allwinner FEL device USB vendor ID.
const AW_VENDOR_ID: u16 = 0x1f3a;
/// Allwinner FEL device USB product ID.
const AW_PRODUCT_ID: u16 = 0xefe8;
/// Allwinner USB read request.
const AW_USB_READ: u16 = 0x11;
/// Allwinner USB write request.
const AW_USB_WRITE: u16 = 0x12;

// Request types:
/// Allwinner FEL version request.
const AW_FEL_VERSION: u32 = 0x001;
/// Allwinner FEL write request.
const AW_FEL_1_WRITE: u32 = 0x101;
/// Allwinner FEL execution request.
const AW_FEL_1_EXEC: u32 = 0x102;
/// Allwinner FEL read request.
const AW_FEL_1_READ: u32 = 0x103;

// We don't want the scratch code/buffer to exceed a maximum size of `0x400` bytes (256 32-bit
// words) on `read_words()`/`write_words()` transfers. To guarantee this, we have to account for
// the amount of space the ARM code uses.

/// Word count of the `[read/write]_words()` scratch code.
const LCODE_ARM_RW_WORDS: usize = 12;
/// Word count of the `rmr_request` scratch code.
const LCODE_ARM_RMR_WORDS: usize = 15;
/// Code size in bytes.
const LCODE_ARM_RW_SIZE: usize = (LCODE_ARM_RW_WORDS << 2);
/// Maximum total words in buffer.
const LCODE_MAX_TOTAL: usize = 0x100;
/// Data words for read/write requests.
const LCODE_MAX_RW_WORDS: usize = (LCODE_MAX_TOTAL - LCODE_ARM_RW_WORDS);

/// *DRAM* base address.
const DRAM_BASE: u32 = 0x4000_0000;
/// *DRAM* size, in bytes.
const DRAM_SIZE: u32 = 0x8000_0000;

/// Converts a reference to a `u32` slice to a reference to a `u8` slice.
///
/// The new slice will have a 4 times bigger length.
#[inline(always)]
#[allow(unsafe_code)]
fn u32_as_u8(src: &[u32]) -> &[u8] {
    // Safe because both slices have the same size in bytes.
    unsafe { std::slice::from_raw_parts(src.as_ptr() as *mut u8, src.len() * 4) }
}

/// Converts a mutable reference to a `u32` slice to a mutable reference to a `u8` slice.
///
/// The new slice will have a 4 times bigger length.
#[inline(always)]
#[allow(unsafe_code)]
fn u32_as_u8_mut(src: &mut [u32]) -> &mut [u8] {
    // Safe because both slices have the same size in bytes.
    unsafe { std::slice::from_raw_parts_mut(src.as_mut_ptr() as *mut u8, src.len() * 4) }
}

/// FEL device handle.
pub struct FelHandle<'h> {
    usb_handle: UsbHandle<'h>,
    soc_version: soc::Version,
    soc_info: soc::Info,
}

impl<'h> fmt::Debug for FelHandle<'h> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("FelHandle")
            .field("usb_handle", &self.usb_handle)
            .field("soc_version", &self.soc_version)
            .field("soc_info", &self.soc_info)
            .finish()
    }
}

impl<'h> FelHandle<'h> {
    /// Gets the SoC information from the FEL device.
    ///
    /// Note: This is a no-op. The *SoC* information is acquired during initialization.
    pub fn get_soc_info(&self) -> &soc::Info {
        &self.soc_info
    }

    /// Gets the *SoC* version information from the *FEL* device.
    ///
    /// Note: This is a no-op. The SoC information is acquired during initialization.
    pub fn get_version_info(&self) -> &soc::Version {
        &self.soc_version
    }

    /// Enables the L2 cache.
    fn enable_l2_cache(&self) -> Result<(), Error> {
        let arm_code: [u32; 4] = [
            // mrc        15, 0, r2, cr1, cr0, {1}
            0x_ee_11_2f_30_u32.to_le(),
            // orr        r2, r2, #2
            0x_e3_82_20_02_u32.to_le(),
            // mcr        15, 0, r2, cr1, cr0, {1}
            0x_ee_01_2f_30_u32.to_le(),
            // Return back to FEL
            // bx         lr
            0x_e1_2f_ff_1e_u32.to_le(),
        ];
        self.fel_write(self.soc_info.get_scratch_addr(), u32_as_u8(&arm_code))
            .context("could not write L2 cache enabling ARM code")?;
        self.fel_execute(self.soc_info.get_scratch_addr())
            .context("could not execute L2 cache enabling ARM code")?;
        Ok(())
    }

    /// Gets stack information.
    ///
    /// The result will be a tuple. The first element will be the `SP_irq`, while the second element
    /// will be the nuser mode `SP`.
    fn get_stack_info(&self) -> Result<(u32, u32), Error> {
        let arm_code: [u32; 9] = [
            // mrs        r0, CPSR
            0x_e1_0f_00_00_u32.to_le(),
            // bic        r1, r0, #31
            0x_e3_c0_10_1f_u32.to_le(),
            // orr        r1, r1, #18
            0x_e3_81_10_12_u32.to_le(),
            // msr        CPSR_c, r1
            0x_e1_21_f0_01_u32.to_le(),
            // mov        r1, sp
            0x_e1_a0_10_0d_u32.to_le(),
            // msr        CPSR_c, r0
            0x_e1_21_f0_00_u32.to_le(),
            // str        r1, [pc, #4]
            0x_e5_8f_10_04_u32.to_le(),
            // str        sp, [pc, #4]
            0x_e5_8f_d0_04_u32.to_le(),
            // Return back to FEL
            // bx         lr
            0x_e1_2f_ff_1e_u32.to_le(),
        ];
        self.fel_write(self.soc_info.get_scratch_addr(), u32_as_u8(&arm_code))
            .context("could not write ARM code to read stack information")?;
        self.fel_execute(self.soc_info.get_scratch_addr())
            .context("could not execute ARM code to get stack information")?;
        let mut result = [0_u8; 2 * 4];
        self.fel_read(self.soc_info.get_scratch_addr() + 9 * 4, &mut result)
            .context("could not read generated stack information")?;
        Ok((
            LittleEndian::read_u32(&result[..4]),
            LittleEndian::read_u32(&result[4..]),
        ))
    }

    /// Generates a default *MMU* translation table.
    fn default_mmu_translation_table() -> [u32; 4 * 1024] {
        let mut tt = [0_u32; 4 * 1024];
        for (i, word) in tt.iter_mut().enumerate() {
            *word = 0x0000_0DE2 | ((i as u32) << 20);
            if i == 0x000 || i == 0xFFF {
                *word |= 0x1000;
            }
        }
        tt
    }

    /// Backup *MMU* translation table and disable it.
    fn backup_and_disable_mmu(&self) -> Result<Option<[u32; 4 * 1024]>, Error> {
        // Below are some checks for the register values, which are known to be initialized in this
        // particular way by the existing BROM implementations. We don't strictly need them to
        // exactly match, but still have these safety guards in place in order to detect and review
        // any potential configuration changes in future SoC variants (if one of these checks fails,
        // then it is not a serious problem but more likely just an indication that one of these
        // check needs to be relaxed).

        // Basically, ignore M/Z/I/V/UNK bits and expect no TEX remap.
        // Check `SCTLR` register.
        let sctlr = self.get_sctlr().context("unable to read SCTLR register")?;
        if (sctlr & !((0x7 << 11) | (1 << 6) | 1)) != 0x00C5_0038 {
            bail!("unexpected SCTLR register ({:#010x})", sctlr);
        }
        if (sctlr & 0x0000_0001) == 0 {
            return Ok(None);
        }

        // Check `DACR` register.
        let dacr = self.get_dacr().context("unable to read DACR register")?;
        if dacr != 0x5555_5555 {
            bail!("unexpected DACR register ({:#010x})", dacr);
        }

        // Check `TTBRC` register.
        let ttbcr = self.get_ttbcr().context("unable to read TTBCR register")?;
        if ttbcr != 0x0000_0000 {
            bail!("unexpected TTBCR register ({:#010x})", ttbcr);
        }

        // Check `TTBR0` register
        let ttbr0 = self.get_ttbr0().context("unable to read TTBR0 register")?;
        if (ttbr0 & 0x0000_3FFF) != 0 {
            bail!("unexpected TTBR0 register ({:#010x})", ttbr0);
        }

        // Read MMU translation table.
        let mut tt = [0_u32; 4 * 1024];
        self.fel_read(ttbr0, u32_as_u8_mut(&mut tt)).context({
            format!(
                "could not read the MMU translation table from {:#010x}",
                ttbr0
            )
        })?;
        for (i, le_word) in tt.iter_mut().enumerate() {
            let word = u32::from_le(*le_word);

            // Sanity checks:
            if ((word >> 1) & 1) != 1 || ((word >> 18) & 1) != 0 {
                bail!("found a word in the translation table that was not a section descriptor");
            }
            if (word >> 20) != i as u32 {
                bail!("found a word in the translation table that was not a direct mapping");
            }
            *le_word = word;
        }

        // Disable I-cache, MMU and branch prediction
        let arm_code: [u32; 6] = [
            // mrc        15, 0, r0, cr1, cr0, {0}
            0x_ee_11_0f_10_u32.to_le(),
            // bic        r0, r0, #1
            0x_e3_c0_00_01_u32.to_le(),
            // bic        r0, r0, #4096
            0x_e3_c0_0a_01_u32.to_le(),
            // bic        r0, r0, #2048
            0x_e3_c0_0b_02_u32.to_le(),
            // mcr        15, 0, r0, cr1, cr0, {0}
            0x_ee_01_0f_10_u32.to_le(),
            // Return back to FEL
            // bx         lr
            0x_e1_2f_ff_1e_u32.to_le(),
        ];

        self.fel_write(self.soc_info.get_scratch_addr(), u32_as_u8(&arm_code))
            .context({
                "could not write ARM code to memory for disabling I-cache, MMU and branch \
                 prediction"
            })?;
        self.fel_execute(self.soc_info.get_scratch_addr())
            .context({
                "could not execute ARM code to memory to disable I-cache, MMU and branch prediction"
            })?;
        Ok(Some(tt))
    }

    // Restore and enable MMU.
    fn restore_and_enable_mmu(&self, mut tt: [u32; 4 * 1024]) -> Result<(), Error> {
        let ttbr0 = self.get_ttbr0().context("unable to read `TBBR0` register")?;

        // Setting write-combine mapping for *DRAM*.
        let start = (DRAM_BASE >> 20) as usize;
        let end = ((DRAM_BASE + DRAM_SIZE) >> 20) as usize;
        for word in tt[start..end].iter_mut() {
            // Clear `TEXCB` bits
            *word &= !((7 << 12) | (1 << 3) | (1 << 2));
            // Set `TEXCB` to `00100` (Normal uncached mapping)
            *word |= 1 << 12;
        }

        // Setting cached mappint for *BROM*.
        // Clear `TEXCB` bits first
        tt[0xFFF] &= !((7 << 12) | (1 << 3) | (1 << 2));
        // Set `TEXCB` to `00111` (Normal write-back cached mapping)
        tt[0xFFF] |= (1 << 12) | // TEX
                     (1 << 3) | // C
                     (1 << 2); // B

        if cfg!(not(target_endian = "little")) {
            for word in tt.iter_mut() {
                *word = word.to_le();
            }
        }

        self.fel_write(ttbr0, u32_as_u8(&tt))
            .context("could not write MMU translation table to memory")?;

        // Enabling I-cache, MMU and branch prediction...
        let arm_code: [u32; 12] = [
            // Invalidate I-cache, TLB and BTB
            // mov        r0, #0
            0x_e3_a0_00_00_u32.to_le(),
            // mcr        15, 0, r0, cr8, cr7, {0}
            0x_ee_08_0f_17_u32.to_le(),
            // mcr        15, 0, r0, cr7, cr5, {0}
            0x_ee_07_0f_15_u32.to_le(),
            // mcr        15, 0, r0, cr7, cr5, {6}
            0x_ee_07_0f_d5_u32.to_le(),
            // dsb        sy
            0x_f5_7f_f0_4f_u32.to_le(),
            // isb        sy
            0x_f5_7f_f0_6f_u32.to_le(),
            // Enable I-cache, MMU and branch prediction
            // mrc        15, 0, r0, cr1, cr0, {0}
            0x_ee_11_0f_10_u32.to_le(),
            // orr        r0, r0, #1
            0x_e3_80_00_01_u32.to_le(),
            // orr        r0, r0, #4096
            0x_e3_80_0a_01_u32.to_le(),
            // orr        r0, r0, #2048
            0x_e3_80_0b_02_u32.to_le(),
            // mcr        15, 0, r0, cr1, cr0, {0}
            0x_ee_01_0f_10_u32.to_le(),
            // Return back to FEL
            // bx         lr
            0x_e1_2f_ff_1e_u32.to_le(),
        ];

        self.fel_write(self.soc_info.get_scratch_addr(), u32_as_u8(&arm_code))
            .context("could not write MMU enablement code to device memory")?;
        self.fel_execute(self.soc_info.get_scratch_addr())
            .context("could not execute the MMU enablement code")?;
        Ok(())
    }

    /// Gets the `TTBR0` register.
    fn get_ttbr0(&self) -> Result<u32, Error> {
        self.read_arm_cp_reg(15, 0, 2, 0, 0)
    }

    /// Sets the `TTBR0` register to the given value.
    fn set_ttbr0(&self, val: u32) -> Result<(), Error> {
        self.write_arm_cp_reg(15, 0, 2, 0, 0, val)
    }

    /// Gets the `TTBCR` register.
    fn get_ttbcr(&self) -> Result<u32, Error> {
        self.read_arm_cp_reg(15, 0, 2, 0, 2)
    }

    /// Sets the `TTBCR` register to the given value.
    fn set_ttbcr(&self, val: u32) -> Result<(), Error> {
        self.write_arm_cp_reg(15, 0, 2, 0, 2, val)
    }

    /// Gets the `DACR` register.
    fn get_dacr(&self) -> Result<u32, Error> {
        self.read_arm_cp_reg(15, 0, 3, 0, 0)
    }

    /// Sets the `DACR` register to the given value.
    fn set_dacr(&self, val: u32) -> Result<(), Error> {
        self.write_arm_cp_reg(15, 0, 3, 0, 0, val)
    }

    /// Gets the `SCTLR` register.
    fn get_sctlr(&self) -> Result<u32, Error> {
        self.read_arm_cp_reg(15, 0, 1, 0, 0)
    }

    /// Sets the `SCTLR` register to the given value.
    #[allow(dead_code)]
    fn set_sctlr(&self, val: u32) -> Result<(), Error> {
        self.write_arm_cp_reg(15, 0, 1, 0, 0, val)
    }

    /// Reads the given ARM register.
    fn read_arm_cp_reg(
        &self,
        coproc: u32,
        opc1: u32,
        cr_n: u32,
        cr_m: u32,
        opc2: u32,
    ) -> Result<u32, Error> {
        let opcode = 0xEE00_0000 | (1 << 20) | (1 << 4) | ((opc1 & 7) << 21) | ((cr_n & 15) << 16)
            | ((coproc & 15) << 8) | ((opc2 & 7) << 5) | (cr_m & 15);
        let arm_code: [u32; 3] = [
            // mrc  coproc, opc1, r0, cr_n, cr_m, opc2
            opcode.to_le(),
            // str  r0, [pc]
            0x_e5_8f_00_00_u32.to_le(),
            // bx   lr
            0x_e1_2f_ff_1e_u32.to_le(),
        ];
        self.fel_write(self.soc_info.get_scratch_addr(), u32_as_u8(&arm_code))
            .context("could not write ARM code to read register")?;
        self.fel_execute(self.soc_info.get_scratch_addr())
            .context("could not execute ARM code to read register")?;
        let mut reg_value = [0_u8; 4];
        self.fel_read(self.soc_info.get_scratch_addr() + 3 * 4, &mut reg_value)
            .context("could not read the register information from memory")?;
        Ok(LittleEndian::read_u32(&reg_value))
    }

    /// Writes the given value to the given ARM register.
    fn write_arm_cp_reg(
        &self,
        coproc: u32,
        opc1: u32,
        cr_n: u32,
        cr_m: u32,
        opc2: u32,
        val: u32,
    ) -> Result<(), Error> {
        let opcode = 0xEE00_0000 | (1 << 4) | ((opc1 & 7) << 21) | ((cr_n & 15) << 16)
            | ((coproc & 15) << 8) | ((opc2 & 7) << 5) | (cr_m & 15);
        let arm_code: [u32; 6] = [
            // ldr  r0, [pc, #12]
            0x_e5_9f_00_0c_u32.to_le(),
            // mcr  coproc, opc1, r0, cr_n, cr_m, opc2
            opcode.to_le(),
            // dsb  sy
            0x_f5_7f_f0_4f_u32.to_le(),
            // isb  sy
            0x_f5_7f_f0_6f_u32.to_le(),
            // bx   lr
            0x_e1_2f_ff_1e_u32.to_le(),
            val.to_le(),
        ];
        self.fel_write(self.soc_info.get_scratch_addr(), u32_as_u8(&arm_code))
            .context("could not write ARM code to write to register")?;
        self.fel_execute(self.soc_info.get_scratch_addr())
            .context("could not execute ARM code to write to register")?;
        Ok(())
    }

    /// Reads the SID from the SoC if it has one.
    pub fn read_sid(&self) -> Result<Option<[u32; 4]>, Error> {
        if let Some(sid_addr) = self.soc_info.get_sid_addr() {
            let mut sid = [0_u32; 4];
            self.read_words(sid_addr, &mut sid)
                .context("unable to read SID registers")?;
            Ok(Some(sid))
        } else {
            Ok(None)
        }
    }

    /// Read words chunk from the FEL device memory.
    pub fn read_words(&self, offset: u32, words: &mut [u32]) -> Result<(), Error> {
        assert!(
            u32::max_value() - (words.len() * 4) as u32 > offset,
            "cannot read above {:#010x} - offset: {:#010x}, buffer length: {:#010x} words, words \
             above offset: {:#010x}",
            u32::max_value(),
            offset,
            words.len(),
            (u32::max_value() - offset) / 4
        );
        for (i, chunk) in words.chunks_mut(LCODE_MAX_RW_WORDS).enumerate() {
            self.read_words_chunk(offset + (i * LCODE_ARM_RW_WORDS) as u32, chunk)
                .context("could not read word chunk from memory")?;
        }
        Ok(())
    }

    /// Write words chunk to the FEL device memory.
    pub fn write_words(&self, offset: u32, words: &[u32]) -> Result<(), Error> {
        assert!(
            u32::max_value() - (words.len() * 4) as u32 > offset,
            "cannot write above {:#010x} - offset: {:#010x}, buffer length: {:#010x} words, words \
             above offset: {:#010x}",
            u32::max_value(),
            offset,
            words.len(),
            (u32::max_value() - offset) / 4
        );
        for (i, chunk) in words.chunks(LCODE_MAX_RW_WORDS).enumerate() {
            self.write_words_chunk(offset + (i * LCODE_ARM_RW_WORDS) as u32, chunk)
                .context("could not write word chunk to memory")?;
        }
        Ok(())
    }

    /// Read words chunk from the FEL device memory.
    fn read_words_chunk(&self, offset: u32, words: &mut [u32]) -> Result<(), Error> {
        debug_assert!(
            words.len() <= LCODE_MAX_RW_WORDS,
            "read_words requests cannot exceed {} words",
            LCODE_MAX_RW_WORDS
        );
        let arm_code: [u32; LCODE_ARM_RW_WORDS] = [
            // `ldr   r0, [pc, #32] ; ldr r0,[read_addr]`
            0x_e5_9f_00_20_u32.to_le(),
            // `add   r1, pc, #36   ; adr r1, read_data`
            0x_e2_8f_10_24_u32.to_le(),
            // `ldr   r2, [pc, #28] ; ldr r2,[read_count]`
            0x_e5_9f_20_1c_u32.to_le(),
            // `cmp   r2, #LCODE_RW_MAX_WORDS`
            (0x_e3_52_00_00_u32 + LCODE_MAX_RW_WORDS as u32).to_le(),
            // `movgt r2, #LCODE_MAX_RW_WORDS`
            (0x_c3_a0_20_00_u32 + LCODE_MAX_RW_WORDS as u32).to_le(),
            // read_loop:
            // `subs  r2, r2, #1    ; r2 -= 1`
            0x_e2_52_20_01_u32.to_le(),
            // `bxmi  lr            ; return if (r2 < 0)`
            0x_41_2f_ff_1e_u32.to_le(),
            // `ldr   r3, [r0], #4  ; load and post-inc`
            0x_e4_90_30_04_u32.to_le(),
            // `str   r3, [r1], #4  ; store and post-inc`
            0x_e4_81_30_04_u32.to_le(),
            // `b     read_loop`
            0x_ea_ff_ff_fa_u32.to_le(),
            offset.to_le(),
            (words.len() as u32).to_le(),
        ];
        // read_data (buffer) follows, i.e. values go here.

        // scratch buffer setup: transfers ARM code, including addr and count
        self.fel_write(self.soc_info.get_scratch_addr(), u32_as_u8(&arm_code))
            .context("unable to write ARM code to scratch address")?;
        // execute code, read back the result
        self.fel_execute(self.soc_info.get_scratch_addr())
            .context("unable to execute ARM code")?;
        self.fel_read(
            self.soc_info.get_scratch_addr() + LCODE_ARM_RW_SIZE as u32,
            u32_as_u8_mut(words),
        ).context("unable to read generated buffer")?;

        if cfg!(not(target_endian = "little")) {
            for word in words.iter_mut() {
                *word = word.to_le();
            }
        }

        Ok(())
    }

    /// Write words chunk to the FEL device memory.
    fn write_words_chunk(&self, offset: u32, words: &[u32]) -> Result<(), Error> {
        debug_assert!(
            words.len() <= LCODE_MAX_RW_WORDS,
            "write_words requests cannot exceed {} words",
            LCODE_MAX_RW_WORDS
        );

        let mut arm_code = Vec::with_capacity(LCODE_ARM_RW_WORDS + words.len());
        arm_code.extend_from_slice(&[
            // `ldr   r0, [pc, #32] ; ldr r0,[write_addr]`
            0x_e5_9f_00_20_u32.to_le(),
            // `add   r1, pc, #36   ; adr r1, write_data`
            0x_e2_8f_10_24_u32.to_le(),
            // `ldr   r2, [pc, #28] ; ldr r2,[write_count]`
            0x_e5_9f_20_1c_u32.to_le(),
            // `cmp   r2, #LCODE_MAX_RW_WORDS`
            (0x_e3_52_00_00_u32 + LCODE_MAX_RW_WORDS as u32).to_le(),
            // `movgt r2, #LCODE_MAX_RW_WORDS`
            (0x_c3_a0_20_00_u32 + LCODE_MAX_RW_WORDS as u32).to_le(),
            // write_loop:
            // `subs  r2, r2, #1    ; r2 -= 1`
            0x_e2_52_20_01_u32.to_le(),
            // `bxmi  lr            ; return if (r2 < 0)`
            0x_41_2f_ff_1e_u32.to_le(),
            // `ldr   r3, [r1], #4  ; load and post-inc`
            0x_e4_91_30_04_u32.to_le(),
            // `str   r3, [r0], #4  ; store and post-inc`
            0x_e4_80_30_04_u32.to_le(),
            // `b     write_loop`
            0x_ea_ff_ff_fa_u32.to_le(),
            offset.to_le(),
            (words.len() as u32).to_le(),
        ]);
        // write_data (buffer) follows, i.e. values go here.
        // copy values from source buffer
        for word in words.iter() {
            arm_code.push(word.to_le());
        }

        // scratch buffer setup: transfers ARM code and data
        self.fel_write(self.soc_info.get_scratch_addr(), u32_as_u8(&arm_code))
            .context("unable to write ARM code to scratch address")?;
        // execute code
        self.fel_execute(self.soc_info.get_scratch_addr())
            .context("unable to execute ARM code")?;

        Ok(())
    }

    /// Perform FEL RMR request.
    ///
    /// This function stores a given entry point to the `RVBAR` address for *CPU0*, and then writes
    /// the Reset Management Register to request a warm boot.
    /// It is useful with some *AArch64* transitions, e.g. when passing control to ARM Trusted
    /// Firmware (ATF) during the boot process of Pine64.
    ///
    /// The code was inspired by
    /// [U-boot](https://github.com/apritzel/u-boot/commit/fda6bd1bf285c44f30ea15c7e6231bf53c31d4a8)
    pub fn rmr_request(&self, entry_point: u32, aarch64: bool) -> Result<(), Error> {
        if let Some(rvbar_reg) = self.soc_info.get_rvbar_reg() {
            let rmr_mode: u32 = (1 << 1) | (if aarch64 { 1 } else { 0 });

            let arm_code: [u32; LCODE_ARM_RMR_WORDS] = [
                // ldr    r0, [rvbar_reg]
                0x_e5_9f_00_28_u32.to_le(),
                // ldr    r1, [entry_point]
                0x_e5_9f_10_28_u32.to_le(),
                // str    r1, [r0]
                0x_e5_80_10_00_u32.to_le(),
                // dsb    sy
                0x_f5_7f_f0_4f_u32.to_le(),
                // isb    sy
                0x_f5_7f_f0_6f_u32.to_le(),
                // ldr    r1, [rmr_mode]
                0x_e5_9f_10_1c_u32.to_le(),
                // mrc    15, 0, r0, cr12, cr0, {2}
                0x_ee_1c_0f_50_u32.to_le(),
                // orr    r0, r0, r1
                0x_e1_80_00_01_u32.to_le(),
                // mcr    15, 0, r0, cr12, cr0, {2}
                0x_ee_0c_0f_50_u32.to_le(),
                // isb    sy
                0x_f5_7f_f0_6f_u32.to_le(),
                // loop:  wfi
                0x_e3_20_f0_03_u32.to_le(),
                // b      <loop>
                0x_ea_ff_ff_fd_u32.to_le(),
                rvbar_reg.to_le(),
                entry_point.to_le(),
                rmr_mode.to_le(),
            ];

            self.fel_write(self.soc_info.get_scratch_addr(), u32_as_u8(&arm_code))
                .context("unable to write ARM code to scratch address")?;
            self.fel_execute(self.soc_info.get_scratch_addr())
                .context("unable to execute ARM code")?;
            Ok(())
        } else {
            bail!(
                "can't issue RMR request, the SoC ({}) does not support RVBAR or it's unknown",
                self.soc_info.get_name()
            );
        }
    }
}

impl<'h> Deref for FelHandle<'h> {
    type Target = UsbHandle<'h>;

    fn deref(&self) -> &UsbHandle<'h> {
        &self.usb_handle
    }
}

/// USB device handle.
pub struct UsbHandle<'h> {
    device_handle: DeviceHandle<'h>,
    endpoint_in: u8,
    endpoint_out: u8,
    iface_detached: bool,
}

impl<'h> fmt::Debug for UsbHandle<'h> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("UsbHandle")
            .field("endpoint_in", &self.endpoint_in)
            .field("endpoint_out", &self.endpoint_out)
            .field("iface_detached", &self.iface_detached)
            .finish()
    }
}

impl<'h> UsbHandle<'h> {
    /// Creates a USB handle from the given device.
    fn from_device(device: &libusb::Device<'h>) -> Result<UsbHandle<'h>, Error> {
        let mut handle = UsbHandle {
            device_handle: device.open().context("unable to open device")?,
            endpoint_in: 0,
            endpoint_out: 0,
            iface_detached: false,
        };
        handle.claim(&device)?;
        Ok(handle)
    }

    /// Claim the given device.
    fn claim(&mut self, device: &libusb::Device<'h>) -> Result<(), Error> {
        if let Err(e) = self.device_handle.claim_interface(0) {
            if cfg!(target_os = "linux") {
                self.device_handle
                    .detach_kernel_driver(0)
                    .context("unable to detach kernel driver")?;
                self.iface_detached = true;
                self.device_handle
                    .claim_interface(0)
                    .context("unable to claim device interface")?;
            } else {
                bail!(e.context("unable to claim device interface"));
            }
        }
        self.get_endpoints(&device)
            .context("unable to get device endpoints")?;
        Ok(())
    }

    /// Updates the endpoints of the USB handle.
    fn get_endpoints(&mut self, device: &libusb::Device<'h>) -> Result<(), Error> {
        use libusb::{Direction, TransferType};

        let config_descriptor = device
            .active_config_descriptor()
            .context("unable to get active config descriptor")?;
        for interface in config_descriptor.interfaces() {
            for descriptor in interface.descriptors() {
                for endpoint in descriptor.endpoint_descriptors() {
                    if let TransferType::Bulk = endpoint.transfer_type() {
                        match endpoint.direction() {
                            Direction::In => self.endpoint_in = endpoint.address(),
                            Direction::Out => self.endpoint_out = endpoint.address(),
                        }
                    }
                }
            }
        }
        Ok(())
    }

    /// Fill memory at the given offset.
    ///
    /// It will fill `num_size` bytes with the given byte.
    pub fn fel_fill(&self, offset: u32, num_bytes: u32, byte: u8) -> Result<(), Error> {
        assert!(
            u32::max_value() - num_bytes > offset,
            "cannot write above {:#010x} - offset: {:#010x}, num_bytes: {:#010x}, bytes above \
             offset: {:#010x}",
            u32::max_value(),
            offset,
            num_bytes,
            u32::max_value() - offset
        );
        let buf = vec![byte; num_bytes as usize];
        self.fel_write(offset, &buf)
            .context("unable to write filling buffer to device memory")?;
        Ok(())
    }

    /// Reads from the FEL device memory at the given offset.
    ///
    /// It will fill all the given buffer, but it **will panic** if the buffer overflows total
    /// memory address space.
    pub fn fel_read(&self, offset: u32, buf: &mut [u8]) -> Result<(), Error> {
        assert!(
            u32::max_value() - buf.len() as u32 > offset,
            "cannot read above {:#010x} - offset: {:#010x}, buffer length: {:#010x}, bytes above \
             offset: {:#010x}",
            u32::max_value(),
            offset,
            buf.len(),
            u32::max_value() - offset
        );
        self.send_fel_request(AW_FEL_1_READ, offset, buf.len() as u32)
            .context("unable to send AW_FEL_1_READ FEL request")?;
        self.usb_read(buf).context("unable read data from USB")?;
        self.read_fel_status().context("unable to read FEL status")?;
        Ok(())
    }

    /// Writes to the FEL device memory at the given offset.
    ///
    /// It **will panic** if the buffer overflows total memory address space.
    pub fn fel_write(&self, offset: u32, buf: &[u8]) -> Result<(), Error> {
        assert!(
            u32::max_value() - buf.len() as u32 > offset,
            "cannot write above {:#010x} - offset: {:#010x}, buffer length: {:#010x}, bytes above \
             offset: {:#010x}",
            u32::max_value(),
            offset,
            buf.len(),
            u32::max_value() - offset
        );
        self.send_fel_request(AW_FEL_1_WRITE, offset, buf.len() as u32)
            .context("unable to send AW_FEL_1_WRITER FEL request")?;
        self.usb_write(buf).context("unable write data to USB")?;
        self.read_fel_status().context("unable to read FEL status")?;
        Ok(())
    }

    /// Makes the FEL device execute the code at the given address.
    pub fn fel_execute(&self, offset: u32) -> Result<(), Error> {
        self.send_fel_request(AW_FEL_1_EXEC, offset, 0)
            .context("unable to send AW_FEL_1_EXEC FEL request")?;
        self.read_fel_status().context("unable to read FEL status")?;
        Ok(())
    }

    /// Gets the SoC version information.
    fn get_fel_version(&self) -> Result<soc::Version, Error> {
        self.send_fel_request(AW_FEL_VERSION, 0, 0)
            .context("unable to send AW_FEL_VERSION FEL request")?;
        let mut buf = [0_u8; 32];
        self.usb_read(&mut buf)
            .context("unable to read version from USB")?;
        self.read_fel_status().context("unable to read FEL status")?;

        Ok(soc::Version::from_bytes(buf))
    }

    /// Reads the FEL status.
    fn read_fel_status(&self) -> Result<(), Error> {
        let mut buf = [0_u8; 8];
        self.usb_read(&mut buf).context("unable to read from USB")?;
        Ok(())
    }

    /// Sends a FEL request.
    fn send_fel_request(&self, req_type: u32, addr: u32, len: u32) -> Result<(), Error> {
        use byteorder::{ByteOrder, LittleEndian};

        let mut request = [0_u8; 16];
        LittleEndian::write_u32(&mut request[..4], req_type);
        LittleEndian::write_u32(&mut request[4..8], addr);
        LittleEndian::write_u32(&mut request[8..12], len);
        // 4 byte padding.

        self.usb_write(&request).context("unable to write to USB")?;
        Ok(())
    }

    /// Reads the given data from the USB.
    fn usb_read(&self, data: &mut [u8]) -> Result<(), Error> {
        self.send_usb_request(AW_USB_READ, data.len() as u32)
            .context("unable to send AW_USB_READ USB request")?;
        UsbHandle::usb_bulk_recv(&self.device_handle, self.endpoint_in, data).context({
            "unable to receive data in bulk from USB after AW_USB_READ USB \
             request"
        })?;
        self.read_usb_response()
            .context("unable to read response from USB")?;
        Ok(())
    }

    /// Writes the given data to the USB.
    fn usb_write(&self, data: &[u8]) -> Result<(), Error> {
        self.send_usb_request(AW_USB_WRITE, data.len() as u32)
            .context("unable to send AW_USB_WRITE USB request")?;
        UsbHandle::usb_bulk_send(&self.device_handle, self.endpoint_out, data)
            .context("unable to send data in bulk to USB after AW_USB_WRITE USB request")?;
        self.read_usb_response()
            .context("unable to read response from USB")?;
        Ok(())
    }

    /// Sends the request type USB request.
    fn send_usb_request(&self, req_type: u16, len: u32) -> Result<(), Error> {
        use byteorder::{ByteOrder, LittleEndian};

        let mut request = [0_u8; 32];
        request[..4].clone_from_slice(b"AWUC");
        LittleEndian::write_u32(&mut request[8..12], len);
        LittleEndian::write_u32(&mut request[12..16], 0x0C00_0000); // Unknown data
        LittleEndian::write_u16(&mut request[16..18], req_type);
        LittleEndian::write_u32(&mut request[18..22], len); // Length is repeated
                                                            // Bytes from 22 to 32 are padding

        UsbHandle::usb_bulk_send(&self.device_handle, self.endpoint_out, &request)
            .context("unable to send data in bulk to USB")?;
        Ok(())
    }

    /// Reads and discards the USB response. It will check if the response is correct.
    fn read_usb_response(&self) -> Result<(), Error> {
        let mut buf = [0_u8; 13];
        UsbHandle::usb_bulk_recv(&self.device_handle, self.endpoint_in, &mut buf)
            .context("unable to receive data in bulk from USB")?;
        if &buf[..4] == b"AWUS" {
            Ok(())
        } else {
            Err(FelError::Response {
                expected: "AWUS[...]",
                found: format!("{}[...]", String::from_utf8_lossy(&buf[..4])),
            }.into())
        }
    }

    /// Sends data to the USB in bulk.
    ///
    /// It will divide the data in chunks.
    fn usb_bulk_send(device_handle: &DeviceHandle, endpoint: u8, data: &[u8]) -> Result<(), Error> {
        let mut sent = 0;
        while sent < data.len() {
            let slice = if data.len() - sent < AW_USB_MAX_BULK_SEND {
                &data[sent..]
            } else {
                &data[sent..sent + AW_USB_MAX_BULK_SEND]
            };
            sent += device_handle
                .write_bulk(endpoint, slice, Duration::from_secs(USB_TIMEOUT))
                .context({
                    format!(
                        "unable to send data chunk to USB, sent {} bytes: {:?}",
                        sent,
                        &data[..sent]
                    )
                })?;
        }

        Ok(())
    }

    /// Receives data from the USB in bulk.
    ///
    /// It will divide the data in chunks.
    fn usb_bulk_recv(
        device_handle: &DeviceHandle,
        endpoint: u8,
        data: &mut [u8],
    ) -> Result<(), Error> {
        let mut received = 0;
        while received < data.len() {
            let slice = if data.len() - received < AW_USB_MAX_BULK_SEND {
                &mut data[received..]
            } else {
                &mut data[received..received + AW_USB_MAX_BULK_SEND]
            };
            received += device_handle
                .read_bulk(endpoint, slice, Duration::from_secs(USB_TIMEOUT))
                .context({
                    format!(
                        "unable to read data chunk from USB, received {} bytes",
                        received
                    )
                })?;
        }
        Ok(())
    }
}

impl<'h> Drop for UsbHandle<'h> {
    fn drop(&mut self) {
        use std::error::Error;
        use std::io::Write;
        if let Err(e) = self.device_handle.release_interface(0) {
            io::stderr()
                .write_all(
                    format!(
                        "error releasing device handle interface: {:?} ({})",
                        e,
                        e.description()
                    ).as_bytes(),
                )
                .unwrap();
        }
        if cfg!(target_os = "linux") && self.iface_detached {
            if let Err(e) = self.device_handle.attach_kernel_driver(0) {
                io::stderr()
                    .write_all(
                        format!(
                            "error attaching kernel driver: {:?} ({})",
                            e,
                            e.description()
                        ).as_bytes(),
                    )
                    .unwrap();
            }
        }
    }
}

/// Allwinner FEL devices context.
pub struct Fel {
    context: libusb::Context,
}

impl fmt::Debug for Fel {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Fel").finish()
    }
}

impl Fel {
    /// Creates a new Fel object.
    pub fn new() -> Result<Self, Error> {
        Ok(Self {
            context: libusb::Context::new().context("unable to create libUSB context")?,
        })
    }

    /// Get the device from the given bus and address, if it exists and is a FEL device.
    pub fn get_device(&self, bus: u8, address: u8) -> Result<Option<FelHandle>, Error> {
        for device in self.context
            .devices()
            .context("unable to list USB devices")?
            .iter()
        {
            if device.bus_number() == bus && device.address() == address {
                let device_descriptor = device
                    .device_descriptor()
                    .context("unable to get USB device descriptor")?;
                if device_descriptor.vendor_id() == AW_VENDOR_ID
                    && device_descriptor.product_id() == AW_PRODUCT_ID
                {
                    let usb_handle = UsbHandle::from_device(&device)?;
                    let soc_version = usb_handle.get_fel_version()?;
                    return if let Some(soc_info) = soc::Info::from_version(&soc_version) {
                        Ok(Some(FelHandle {
                            usb_handle,
                            soc_version,
                            soc_info,
                        }))
                    } else {
                        Err(FelError::UnsupportedDevId {
                            id: soc_version.get_id(),
                        }.into())
                    };
                } else {
                    return Ok(None);
                }
            }
        }
        Ok(None)
    }

    /// Creates a list of Allwinner devices in Fel mode.
    pub fn list_devices(&self) -> Result<Vec<FelHandle>, Error> {
        let mut result = Vec::new();
        for device in self.context
            .devices()
            .context("unable to list USB devices")?
            .iter()
        {
            let device_descriptor = device
                .device_descriptor()
                .context("unable to get USB device descriptor")?;
            if device_descriptor.vendor_id() == AW_VENDOR_ID
                && device_descriptor.product_id() == AW_PRODUCT_ID
            {
                let usb_handle = UsbHandle::from_device(&device)?;
                let soc_version = usb_handle.get_fel_version()?;
                if let Some(soc_info) = soc::Info::from_version(&soc_version) {
                    result.push(FelHandle {
                        usb_handle,
                        soc_version,
                        soc_info,
                    })
                } else {
                    return Err(FelError::UnsupportedDevId {
                        id: soc_version.get_id(),
                    }.into());
                }
            }
        }
        Ok(result)
    }
}