1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
//! Logic handling reading from Avro format at user level.
use crate::{decode::decode, schema::Schema, types::Value, util, AvroResult, Codec, Error};
use serde_json::from_slice;
use std::{
    io::{ErrorKind, Read},
    str::FromStr,
};

// Internal Block reader.
#[derive(Debug, Clone)]
struct Block<R> {
    reader: R,
    // Internal buffering to reduce allocation.
    buf: Vec<u8>,
    buf_idx: usize,
    // Number of elements expected to exist within this block.
    message_count: usize,
    marker: [u8; 16],
    codec: Codec,
    writer_schema: Schema,
}

impl<R: Read> Block<R> {
    fn new(reader: R) -> AvroResult<Block<R>> {
        let mut block = Block {
            reader,
            codec: Codec::Null,
            writer_schema: Schema::Null,
            buf: vec![],
            buf_idx: 0,
            message_count: 0,
            marker: [0; 16],
        };

        block.read_header()?;
        Ok(block)
    }

    /// Try to read the header and to set the writer `Schema`, the `Codec` and the marker based on
    /// its content.
    fn read_header(&mut self) -> AvroResult<()> {
        let meta_schema = Schema::Map(Box::new(Schema::Bytes));

        let mut buf = [0u8; 4];
        self.reader
            .read_exact(&mut buf)
            .map_err(Error::ReadHeader)?;

        if buf != [b'O', b'b', b'j', 1u8] {
            return Err(Error::HeaderMagic);
        }

        if let Value::Map(meta) = decode(&meta_schema, &mut self.reader)? {
            // TODO: surface original parse schema errors instead of coalescing them here
            let json = meta
                .get("avro.schema")
                .and_then(|bytes| {
                    if let Value::Bytes(ref bytes) = *bytes {
                        from_slice(bytes.as_ref()).ok()
                    } else {
                        None
                    }
                })
                .ok_or(Error::GetAvroSchemaFromMap)?;
            self.writer_schema = Schema::parse(&json)?;

            if let Some(codec) = meta
                .get("avro.codec")
                .and_then(|codec| {
                    if let Value::Bytes(ref bytes) = *codec {
                        std::str::from_utf8(bytes.as_ref()).ok()
                    } else {
                        None
                    }
                })
                .and_then(|codec| Codec::from_str(codec).ok())
            {
                self.codec = codec;
            }
        } else {
            return Err(Error::GetHeaderMetadata);
        }

        self.reader
            .read_exact(&mut self.marker)
            .map_err(Error::ReadMarker)
    }

    fn fill_buf(&mut self, n: usize) -> AvroResult<()> {
        // The buffer needs to contain exactly `n` elements, otherwise codecs will potentially read
        // invalid bytes.
        //
        // The are two cases to handle here:
        //
        // 1. `n > self.buf.len()`:
        //    In this case we call `Vec::resize`, which guarantees that `self.buf.len() == n`.
        // 2. `n < self.buf.len()`:
        //    We need to resize to ensure that the buffer len is safe to read `n` elements.
        //
        // TODO: Figure out a way to avoid having to truncate for the second case.
        self.buf.resize(n, 0);
        self.reader
            .read_exact(&mut self.buf)
            .map_err(Error::ReadIntoBuf)?;
        self.buf_idx = 0;
        Ok(())
    }

    /// Try to read a data block, also performing schema resolution for the objects contained in
    /// the block. The objects are stored in an internal buffer to the `Reader`.
    fn read_block_next(&mut self) -> AvroResult<()> {
        assert!(self.is_empty(), "Expected self to be empty!");
        match util::read_long(&mut self.reader) {
            Ok(block_len) => {
                self.message_count = block_len as usize;
                let block_bytes = util::read_long(&mut self.reader)?;
                self.fill_buf(block_bytes as usize)?;
                let mut marker = [0u8; 16];
                self.reader
                    .read_exact(&mut marker)
                    .map_err(Error::ReadBlockMarker)?;

                if marker != self.marker {
                    return Err(Error::GetBlockMarker);
                }

                // NOTE (JAB): This doesn't fit this Reader pattern very well.
                // `self.buf` is a growable buffer that is reused as the reader is iterated.
                // For non `Codec::Null` variants, `decompress` will allocate a new `Vec`
                // and replace `buf` with the new one, instead of reusing the same buffer.
                // We can address this by using some "limited read" type to decode directly
                // into the buffer. But this is fine, for now.
                self.codec.decompress(&mut self.buf)
            }
            Err(Error::ReadVariableIntegerBytes(io_err)) => {
                if let ErrorKind::UnexpectedEof = io_err.kind() {
                    // to not return any error in case we only finished to read cleanly from the stream
                    Ok(())
                } else {
                    Err(Error::ReadVariableIntegerBytes(io_err))
                }
            }
            Err(e) => Err(e),
        }
    }

    fn len(&self) -> usize {
        self.message_count
    }

    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    fn read_next(&mut self, read_schema: Option<&Schema>) -> AvroResult<Option<Value>> {
        if self.is_empty() {
            self.read_block_next()?;
            if self.is_empty() {
                return Ok(None);
            }
        }

        let mut block_bytes = &self.buf[self.buf_idx..];
        let b_original = block_bytes.len();
        let item = from_avro_datum(&self.writer_schema, &mut block_bytes, read_schema)?;
        self.buf_idx += b_original - block_bytes.len();
        self.message_count -= 1;
        Ok(Some(item))
    }
}

/// Main interface for reading Avro formatted values.
///
/// To be used as an iterator:
///
/// ```no_run
/// # use avro_rs::Reader;
/// # use std::io::Cursor;
/// # let input = Cursor::new(Vec::<u8>::new());
/// for value in Reader::new(input).unwrap() {
///     match value {
///         Ok(v) => println!("{:?}", v),
///         Err(e) => println!("Error: {}", e),
///     };
/// }
/// ```
pub struct Reader<'a, R> {
    block: Block<R>,
    reader_schema: Option<&'a Schema>,
    errored: bool,
    should_resolve_schema: bool,
}

impl<'a, R: Read> Reader<'a, R> {
    /// Creates a `Reader` given something implementing the `io::Read` trait to read from.
    /// No reader `Schema` will be set.
    ///
    /// **NOTE** The avro header is going to be read automatically upon creation of the `Reader`.
    pub fn new(reader: R) -> AvroResult<Reader<'a, R>> {
        let block = Block::new(reader)?;
        let reader = Reader {
            block,
            reader_schema: None,
            errored: false,
            should_resolve_schema: false,
        };
        Ok(reader)
    }

    /// Creates a `Reader` given a reader `Schema` and something implementing the `io::Read` trait
    /// to read from.
    ///
    /// **NOTE** The avro header is going to be read automatically upon creation of the `Reader`.
    pub fn with_schema(schema: &'a Schema, reader: R) -> AvroResult<Reader<'a, R>> {
        let block = Block::new(reader)?;
        let mut reader = Reader {
            block,
            reader_schema: Some(schema),
            errored: false,
            should_resolve_schema: false,
        };
        // Check if the reader and writer schemas disagree.
        reader.should_resolve_schema = reader.writer_schema() != schema;
        Ok(reader)
    }

    /// Get a reference to the writer `Schema`.
    pub fn writer_schema(&self) -> &Schema {
        &self.block.writer_schema
    }

    /// Get a reference to the optional reader `Schema`.
    pub fn reader_schema(&self) -> Option<&Schema> {
        self.reader_schema
    }

    #[inline]
    fn read_next(&mut self) -> AvroResult<Option<Value>> {
        let read_schema = if self.should_resolve_schema {
            self.reader_schema
        } else {
            None
        };

        self.block.read_next(read_schema)
    }
}

impl<'a, R: Read> Iterator for Reader<'a, R> {
    type Item = AvroResult<Value>;

    fn next(&mut self) -> Option<Self::Item> {
        // to prevent keep on reading after the first error occurs
        if self.errored {
            return None;
        };
        match self.read_next() {
            Ok(opt) => opt.map(Ok),
            Err(e) => {
                self.errored = true;
                Some(Err(e))
            }
        }
    }
}

/// Decode a `Value` encoded in Avro format given its `Schema` and anything implementing `io::Read`
/// to read from.
///
/// In case a reader `Schema` is provided, schema resolution will also be performed.
///
/// **NOTE** This function has a quite small niche of usage and does NOT take care of reading the
/// header and consecutive data blocks; use [`Reader`](struct.Reader.html) if you don't know what
/// you are doing, instead.
pub fn from_avro_datum<R: Read>(
    writer_schema: &Schema,
    reader: &mut R,
    reader_schema: Option<&Schema>,
) -> AvroResult<Value> {
    let value = decode(writer_schema, reader)?;
    match reader_schema {
        Some(ref schema) => value.resolve(schema),
        None => Ok(value),
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{types::Record, Reader};
    use std::io::Cursor;

    const SCHEMA: &str = r#"
    {
      "type": "record",
      "name": "test",
      "fields": [
        {
          "name": "a",
          "type": "long",
          "default": 42
        },
        {
          "name": "b",
          "type": "string"
        }
      ]
    }
    "#;
    const UNION_SCHEMA: &str = r#"["null", "long"]"#;
    const ENCODED: &[u8] = &[
        79u8, 98u8, 106u8, 1u8, 4u8, 22u8, 97u8, 118u8, 114u8, 111u8, 46u8, 115u8, 99u8, 104u8,
        101u8, 109u8, 97u8, 222u8, 1u8, 123u8, 34u8, 116u8, 121u8, 112u8, 101u8, 34u8, 58u8, 34u8,
        114u8, 101u8, 99u8, 111u8, 114u8, 100u8, 34u8, 44u8, 34u8, 110u8, 97u8, 109u8, 101u8, 34u8,
        58u8, 34u8, 116u8, 101u8, 115u8, 116u8, 34u8, 44u8, 34u8, 102u8, 105u8, 101u8, 108u8,
        100u8, 115u8, 34u8, 58u8, 91u8, 123u8, 34u8, 110u8, 97u8, 109u8, 101u8, 34u8, 58u8, 34u8,
        97u8, 34u8, 44u8, 34u8, 116u8, 121u8, 112u8, 101u8, 34u8, 58u8, 34u8, 108u8, 111u8, 110u8,
        103u8, 34u8, 44u8, 34u8, 100u8, 101u8, 102u8, 97u8, 117u8, 108u8, 116u8, 34u8, 58u8, 52u8,
        50u8, 125u8, 44u8, 123u8, 34u8, 110u8, 97u8, 109u8, 101u8, 34u8, 58u8, 34u8, 98u8, 34u8,
        44u8, 34u8, 116u8, 121u8, 112u8, 101u8, 34u8, 58u8, 34u8, 115u8, 116u8, 114u8, 105u8,
        110u8, 103u8, 34u8, 125u8, 93u8, 125u8, 20u8, 97u8, 118u8, 114u8, 111u8, 46u8, 99u8, 111u8,
        100u8, 101u8, 99u8, 8u8, 110u8, 117u8, 108u8, 108u8, 0u8, 94u8, 61u8, 54u8, 221u8, 190u8,
        207u8, 108u8, 180u8, 158u8, 57u8, 114u8, 40u8, 173u8, 199u8, 228u8, 239u8, 4u8, 20u8, 54u8,
        6u8, 102u8, 111u8, 111u8, 84u8, 6u8, 98u8, 97u8, 114u8, 94u8, 61u8, 54u8, 221u8, 190u8,
        207u8, 108u8, 180u8, 158u8, 57u8, 114u8, 40u8, 173u8, 199u8, 228u8, 239u8,
    ];

    #[test]
    fn test_from_avro_datum() {
        let schema = Schema::parse_str(SCHEMA).unwrap();
        let mut encoded: &'static [u8] = &[54, 6, 102, 111, 111];

        let mut record = Record::new(&schema).unwrap();
        record.put("a", 27i64);
        record.put("b", "foo");
        let expected = record.into();

        assert_eq!(
            from_avro_datum(&schema, &mut encoded, None).unwrap(),
            expected
        );
    }

    #[test]
    fn test_null_union() {
        let schema = Schema::parse_str(UNION_SCHEMA).unwrap();
        let mut encoded: &'static [u8] = &[2, 0];

        assert_eq!(
            from_avro_datum(&schema, &mut encoded, None).unwrap(),
            Value::Union(Box::new(Value::Long(0)))
        );
    }

    #[test]
    fn test_reader_iterator() {
        let schema = Schema::parse_str(SCHEMA).unwrap();
        let reader = Reader::with_schema(&schema, ENCODED).unwrap();

        let mut record1 = Record::new(&schema).unwrap();
        record1.put("a", 27i64);
        record1.put("b", "foo");

        let mut record2 = Record::new(&schema).unwrap();
        record2.put("a", 42i64);
        record2.put("b", "bar");

        let expected = vec![record1.into(), record2.into()];

        for (i, value) in reader.enumerate() {
            assert_eq!(value.unwrap(), expected[i]);
        }
    }

    #[test]
    fn test_reader_invalid_header() {
        let schema = Schema::parse_str(SCHEMA).unwrap();
        let invalid = ENCODED.to_owned().into_iter().skip(1).collect::<Vec<u8>>();
        assert!(Reader::with_schema(&schema, &invalid[..]).is_err());
    }

    #[test]
    fn test_reader_invalid_block() {
        let schema = Schema::parse_str(SCHEMA).unwrap();
        let invalid = ENCODED
            .to_owned()
            .into_iter()
            .rev()
            .skip(19)
            .collect::<Vec<u8>>()
            .into_iter()
            .rev()
            .collect::<Vec<u8>>();
        let reader = Reader::with_schema(&schema, &invalid[..]).unwrap();
        for value in reader {
            assert!(value.is_err());
        }
    }

    #[test]
    fn test_reader_empty_buffer() {
        let empty = Cursor::new(Vec::new());
        assert!(Reader::new(empty).is_err());
    }

    #[test]
    fn test_reader_only_header() {
        let invalid = ENCODED
            .to_owned()
            .into_iter()
            .take(165)
            .collect::<Vec<u8>>();
        let reader = Reader::new(&invalid[..]).unwrap();
        for value in reader {
            assert!(value.is_err());
        }
    }
}