1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
//! # Avocado: the strongly-typed MongoDB driver
//!
//! This library allows MongoDB users to work directly with statically-typed
//! domain model objects, instead of the dynamically and loosely-typed BSON
//! or JSON representation which is native to Mongo.
//!
//! ### The Prelude
//!
//! Let's get this one out of the way quickly. The most useful and most
//! frequently utilized types from Avocado as well as the `mongodb` and `bson`
//! crates are publicly re-exported under the module [`prelude`](prelude/index.html).
//! Therefore, for most purposes, it's enough to import the library in your
//! code like this:
//!
//! ```rust
//! #[macro_use]
//! extern crate avocado_derive;
//! extern crate avocado;
//!
//! use avocado::prelude::*;
//! #
//! # fn main() {}
//! ```
//!
//! ### Documents
//!
//! The first step is defining your domain model / entity types. Transcoding
//! them to and from BSON is handled by Serde and the BSON crate.
//!
//! Avocado can handle any top-level entity type with the following properties:
//! * It is `Serialize` and `Deserialize`
//! * It has a serializable and deserializable unique ID which appears under
//!   the key `_id` at the top level. **The corresponding field of the `struct`
//!   must be of type `Uid<T>` or `Option<Uid<T>>`,** where `T` is the document
//!   type itself (what would be `Self` in a trait).
//!
//!   If the `_id` field is an `Option<Uid<T>>`, it must be marked with
//!   `#[serde(skip_serializing_if = "Option::is_none")]`, because `null` IDs
//!   won't be able to be returned via `insert_one`, for example (since they
//!   don't deserialize successfully as a `Uid<T>`).
//!
//! * It has a name that is globally unique within the given MongoDB database
//!
//! These constraints are captured by the [`Doc`](doc/trait.Doc.html) trait.
//!
//! Here's an example of how you can `#[derive]` or manually implement `Doc`
//! for your entity types:
//!
//! ```
//! # #[macro_use]
//! # extern crate serde_derive;
//! # #[macro_use]
//! # extern crate avocado_derive;
//! # extern crate avocado;
//! #
//! # use avocado::prelude::*;
//! #
//! // Automatically, for more convenience and sensible defaults, respecting
//! // Serde renaming conventions
//! #[derive(Debug, Serialize, Deserialize, Doc)]
//! struct Job {
//!     #[serde(rename = "_id")]
//!     pub id: Uid<Job>,
//!     pub description: String,
//!     pub salary: u32,
//! }
//! #
//! # fn main() {}
//! ```
//! ```
//! # #[macro_use]
//! # extern crate serde_derive;
//! # extern crate serde;
//! # extern crate avocado;
//! #
//! # use avocado::prelude::*;
//! #
//! // Manually, for complete flexibility and fine-grained control over indexes
//! // and database operation options
//! #[derive(Debug, Serialize, Deserialize)]
//! struct Product {
//!     #[serde(rename = "_id")]
//!     pub id: Uid<Product>,
//!     pub name: String,
//!     pub num_employees: usize,
//! }
//!
//! impl Doc for Product {
//!     // Mandatory associated items:
//!     type Id = ObjectId;
//!
//!     const NAME: &'static str = "Product";
//!
//!     fn id(&self) -> Option<&Uid<Self>> {
//!         Some(&self.id)
//!     }
//!
//!     fn set_id(&mut self, id: Uid<Self>) {
//!         self.id = id;
//!     }
//!
//!     // optionally, you can e.g. override the `indexes()` method:
//!     fn indexes() -> Vec<IndexModel> {
//!         vec![
//!             IndexModel {
//!                 keys: doc!{
//!                     "name": IndexType::Ordered(Order::Ascending),
//!                 },
//!                 options: IndexOptions::default(),
//!             }
//!         ]
//!     }
//! }
//! #
//! # fn main() {}
//! ```
//! Note that the model types `Job` and `Product`:
//!   * Implement the `Serialize` and `Deserialize` traits
//!   * Implement the `Debug` trait. This is *not* strictly necessary, however
//!     it is **very strongly** recommended.
//!   * Have a field which is serialized as `_id`. It doesn't matter what the
//!     name of the field is in Rust; here it's `id` but it could have been
//!     anything else, as long as it serializes/deserializes as `_id` in BSON.
//!   * the `Job::Id` associated type is the underlying raw type of `Uid<Job>`,
//!     and the same holds for `Product`. When deriving `Doc`, it is controlled
//!     by the `#[id_type = "..."]` attribute on the struct declaration. If you
//!     don't specify this attribute, the raw ID type will default to `ObjectId`.
//!   * the `NAME` associated constant describes and identifies the collection
//!     of values of this type.
//!
//! This trait is also responsible for a couple of other collection-related
//! properties, such as specifying the indexes to be created on this collection,
//! by means of the `indexes()` static method. By default, this returns an
//! empty vector meaning no custom indexes apart from the automatically-created
//! index on the `_id` field.
//!
//! A couple more static methods are also available for customizing the default
//! behavior of the collection when performing various database operations,
//! e.g. querying or insertion. If you don't implement these methods, they
//! return sensible defaults. We'll see more on this later.
//!
//! When the `Doc` trait is `#[derive]`d, the `Id` type is bound to the type
//! of whichever field serializes as `_id`. If there's 0 or more than 1 such
//! fields, you will get a compile-time error. The `NAME` constant will
//! be set to the name of the type, respecting the `#[serde(rename = "...")]`
//! attribute at all times.
//!
//! A `#[derive]`d `Doc` trait will not implement the various `..._options()`
//! static methods either, leaving their implementations in the default state.
//!
//! ### Deriving `Doc` with indexes
//!
//! The `#[index(...)]` attribute can be applied to a type several times in
//! order to generate index specifications and implement the `Doc::indexes()`
//! static method. An example is provided below:
//!
//! ```
//! # #[macro_use]
//! # extern crate serde_derive;
//! # #[macro_use]
//! # extern crate avocado_derive;
//! # extern crate avocado;
//! #
//! # use avocado::prelude::*;
//! #
//! #[derive(Debug, Serialize, Deserialize)]
//! struct NaiveDate {
//!     year: u32,
//!     month: u32,
//!     day: u32,
//! }
//!
//! #[derive(Debug, Serialize, Deserialize, Doc)]
//! #[id_type = "u64"]
//! #[index(keys(name = "ascending"))]
//! #[index(
//!     unique,
//!     sparse = false,
//!     name = "establishment_index",
//!     min = "-129.5",
//!     bits = 26,
//!     keys(
//!         established::year  = "descending",
//!         established::month = "ascending",
//!     )
//! )]
//! #[index(keys(geolocation_lng_lat = "2dsphere"))]
//! struct Department {
//!     #[serde(rename = "_id")]
//!     guid: Uid<Department>,
//!     name: Option<String>,
//!     established: NaiveDate,
//!     employees: Vec<ObjectId>,
//!     geolocation_lng_lat: [f32; 2],
//! }
//! #
//! # fn main() {
//!
//! assert_eq!(Department::indexes(), &[
//!     IndexModel {
//!         keys: doc!{
//!             "name": IndexType::Ordered(Order::Ascending),
//!         },
//!         options: IndexOptions::default(),
//!     },
//!     IndexModel {
//!         keys: doc!{
//!             "established.year":  IndexType::Ordered(Order::Descending),
//!             "established.month": IndexType::Ordered(Order::Ascending),
//!         },
//!         options: IndexOptions {
//!             unique: Some(true),
//!             sparse: Some(false),
//!             name: Some(String::from("establishment_index")),
//!             bits: Some(26),
//!             min: Some(-129.5),
//!             ..Default::default()
//!         },
//!     },
//!     IndexModel {
//!         keys: doc!{
//!             "geolocation_lng_lat": IndexType::Geo2DSphere,
//!         },
//!         options: IndexOptions::default(),
//!     },
//! ]);
//! #
//! # }
//! ```
//!
//! This demonstrates the usage of the `index` attribute. To sum up:
//! * Fields to be indexed are given as path-value pairs in the `keys`
//!   sub-attribute. The paths specify the field names whereas the values
//!   describe the type of index that should be created.
//!   * Multi-component paths, such as `foo::bar::qux`, can be used to index
//!     a field of an embedded document or array. This is equivalent with
//!     MongoDB's "dot notation", e.g. the above example translates to the
//!     key `"foo.bar.qux"` in the resuling BSON document.
//!   * If a path (field name) occurs multiple times in the key list, the
//!     last occurrence will overwrite any previous ones.
//!   * The correctness of indexed field names/paths, i.e. the fact that they
//!     indeed exist in the `Doc`ument type, is **not currently enforced.**
//!     This is to allow indexes to be created on fields that only exist
//!     dynamically, e.g. a `HashMap` which is `#[serde(flatten)]`ed into
//!     its containing `struct` type.
//!
//!     In the future, this behavior will be improved: the existence of the
//!     first segment of each field name will be enforced by default. Only the
//!     first segment is checked because further segments, referring to embedded
//!     documents/arrays, can't be checked, as the derive macro doesn't receive
//!     type information, so it only knows about the field names of the type
//!     it is being applied to. It will then be possible for individual fields
//!     to opt out of this constraint, e.g. using a `dynamic` attribute.
//!   * The possible values of the index type are:
//!     * `ascending`
//!     * `descending`
//!     * `text`
//!     * `hashed`
//!     * `2d`
//!     * `2dsphere`
//!     * `geoHaystack`
//! * Additional, optional configuration attributes can be specified, such as
//!   `unique`, `sparse` or `name`. The `name` attribute must be string-valued.
//!   The `unique` and `sparse` switches are either boolean-valued key-value
//!   pairs, or bare words. Specifying a bare word is equivalent with setting
//!   it to `true`, e.g. `unique` is the same as `unique = true`.
//! * The rest of the supported options are:
//!   * `max = 85.0` &mdash; maximal longitude/latitude for `2d` indexes.
//!     This must be a floating-point number in the range `[-180, +180]`.
//!     Use a string to specify negative values.
//!   * `min = "-129.5"` &mdash; minimal allowed longitude/latitude.
//!   * `bits = 26` &mdash; number of bits to set precision of a `2d` index.
//!     Must be an integer between 1 and 32, inclusive.
//!   * `bucket_size` &mdash; grouping granularity of `GeoHaystack` indexes.
//!     Must be a strictly positive integer.
//!   * `default_language = "french"` &mdash; default language of a text index.
//!   * `language_override = "lang"` &mdash; field name that indicates the
//!     language of a document.
//!
//! ### Collections and Databases
//!
//! Once we have defined our entity types, we can start storing and retrieving
//! them. For this, we'll need a database of collections, and one collection
//! per entity type.
//!
//! Avocado piggybacks on top of the `mongodb` crate. You connect to a MongoDB
//! client using exactly the same code that you would use if you were using
//! the driver in its "raw" form, and you obtain a named database in exactly
//! the same manner.
//!
//! Once you have a handle to the desired database, you obtain a handle to a
//! collection within that database. This is where the workflow departs from
//! that of the `mongodb` crate: Avocado has its own, strongly-typed, generic
//! `Collection` type. Let's see how these different parts all work together:
//! ```no_run
//! # #[macro_use]
//! # extern crate magnet_derive;
//! # extern crate magnet_schema;
//! # #[macro_use]
//! # extern crate serde_derive;
//! # extern crate serde;
//! # #[macro_use]
//! # extern crate avocado_derive;
//! # extern crate avocado;
//! # extern crate bson;
//! # extern crate mongodb;
//! #
//! # use avocado::prelude::*;
//! #
//! #[derive(Debug, Clone, Serialize, Deserialize, BsonSchema, Doc)]
//! struct User {
//!     #[serde(rename = "_id")]
//!     id: Uid<User>,
//!     legal_name: String,
//! }
//!
//! # fn main() -> AvocadoResult<()> {
//! // Connect to the server using the underlying mongodb crate.
//! let client = Client::with_uri("mongodb://localhost:27017/")?;
//!
//! // Obtain a database handle, still using the underlying mongodb crate.
//! let db = client.db("avocado_example_db");
//!
//! // Avocado extends database handle types with useful methods which let you
//! // obtain strongly-typed, generic collection handles.
//!
//! // This is how you obtain such a **new, empty** collection without dynamic
//! // schema validation. Note that **this drops and recreates the collection.**
//! // It also creates any indexes specified in the `Doc::indexes()` method.
//! let users_novalidate: Collection<User> = db.empty_collection_novalidate()?;
//!
//! // If you also enable the `schema_validation` feature, you can ask for a
//! // collection which always validates inserted documents based on its schema.
//! // Of course, this also **drops and recreates the collection,** and
//! // it also creates any indexes specified in the `Doc::indexes()` method.
//! let users: Collection<User> = db.empty_collection()?;
//!
//! // If you need to access an **existing collection without emptying it,**
//! // here's how you do it:
//! let users_existing: Collection<User> = db.existing_collection();
//! # Ok(())
//! # }
//! ```
//!
//! ### Operations
//!
//! Once we get hold of a collection, we can finally start performing actual
//! database operations. Some of the most basic ones are:
//!   1. First, we can try and insert some entities.
//!   2. Then, we can update them based on their identity (`_id` field).
//!   3. Finally, we can retrieve them subject to some filtering criteria.
//!
//! Let's see what this looks like in terms of concrete code!
//! ```no_run
//! # extern crate magnet_schema;
//! # #[macro_use]
//! # extern crate serde_derive;
//! # extern crate serde;
//! # extern crate bson;
//! # extern crate mongodb;
//! # #[macro_use]
//! # extern crate avocado_derive;
//! # extern crate avocado;
//! #
//! # use avocado::prelude::*;
//! #
//! # #[derive(Debug, Clone, Serialize, Deserialize, Doc)]
//! # struct User {
//! #    #[serde(rename = "_id")]
//! #    id: Uid<User>,
//! #    legal_name: String,
//! # }
//! #
//! # fn main() -> AvocadoResult<()> {
//! # let client = Client::with_uri("mongodb://localhost:27017/")?;
//! # let db = client.db("avocado_example_db");
//! # let users: Collection<User> = db.empty_collection_novalidate()?;
//! #
//! let alice = User {
//!     id: Uid::new_oid()?,
//!     legal_name: String::from("Alice Wonderland"),
//! };
//! let bob = User {
//!     id: Uid::new_oid()?,
//!     legal_name: String::from("Robert Tables"), // xkcd.com/327
//! };
//! let mut eve = User {
//!     id: Uid::new_oid()?,
//!     legal_name: String::from("Eve Sdropper"),
//! };
//!
//! // You can insert a single entity using `Collection::insert_one()`.
//! users.insert_one(&eve)?;
//!
//! // If you have multiple entities, it's more efficient to use
//! // `insert_many()` instead. It will save you precious network round-trips.
//! users.insert_many(vec![&alice, &bob])?;
//!
//! // Update all properties of an entity based on its identity.
//! eve.legal_name = String::from("Eve Adamson");
//! users.replace_entity(&eve)?;
//!
//! // If you want to insert the entity if one with the same ID doesn't exist,
//! // and update its fields if it does already exist, then use `upsert_entity`:
//! users.upsert_entity(&eve)?;
//!
//! // The above two methods constitute a very easy and quick solution to a
//! // common use case, but they aren't very flexible in terms of speciying
//! // finer-grain filter criteria; and setting each field of a large document
//! // may be inefficient too.
//! // So if you are looking for something more flexible or more efficient,
//! // try `update_one()`, `update_many()`, `upsert_one()`, or `upsert_many()`.
//!
//! // Now that we have some data, we can retrieve and filter it:
//! let filter_criteria = doc!{
//!     "legal_name": "Robert Tables",
//! };
//!
//! for result in users.find_many(filter_criteria)? {
//!     let entity = result?;
//!     println!("Found entity: {:#?}", entity);
//! }
//! #
//! # Ok(())
//! # }
//! ```
//!
//! Actually, instead of raw, loosely-typed BSON documents, you can specify
//! more sophisticated, custom objects for the filter criteria. For instance,
//! an example implementation thereof can be found in `examples/basic.rs`.
//!
//! In fact, several traits requiring some sort of filter specification are
//! implemented for `Document`, but you can always make your own. The very
//! purpose of these traits is to make manipulating the database safer and
//! less error-prone by not requiring programmers to write a separate, ad-hoc
//! query document each time they want to perform a query.
//!
//! For this more advanced (and recommended) use case, see the traits in the
//! [`ops` module](ops/index.html) and the corresponding
//! [methods on `Collection`](coll/struct.Collection.html#methods).
//!
//! For using more descriptive names for some constants in filter or update
//! specification documents, and also for preventing certain classes of typos
//! related to the stringly-typed nature of BSON, several "smart literal" types
//! are provided in the [`literal`](literal/index.html) module.
//!
//! For query-like traits that produce an output, the raw output value (which
//! is always a `Document`) can be transformed to something else, which the
//! `Output` associated type of the trait can be deserialized from. This is
//! the task of the `transform(raw: Document) -> Result<Bson>` method on these
//! traits, e.g. [`Query::transform()`](ops/trait.Query.html#method.transform)
//! or [`Pipeline::transform()`](ops/trait.Pipeline.html#method.transform).
//!
//! For the quick, painless, and idiomatic implementation of these methods,
//! the [`DocumentExt`](ext/trait.DocumentExt.html) trait is provided. This
//! trait is exported through the [`prelude`](prelude/index.html), so you can
//! use it readily. For the intended usage of its methods (specifically,
//! [`remove_str()`](ext/trait.DocumentExt.html#tymethod.remove_str)), plase see
//! the implementation of `GetDescription::transform()` in the example below.
//!
//! A short example:
//!
//! ```no_run
//! # #[macro_use]
//! # extern crate serde_derive;
//! # #[macro_use]
//! # extern crate avocado_derive;
//! # extern crate avocado;
//! #
//! # use avocado::prelude::*;
//! #
//! #[derive(Debug, Clone, Serialize, Deserialize, Doc)]
//! struct Recipe {
//!     #[serde(rename = "_id")]
//!     id: Uid<Recipe>,
//!     ingredients: Vec<String>,
//!     description: String,
//! }
//!
//! #[derive(Debug, Clone)]
//! struct AddIngredient<'a> {
//!     recipe_id: &'a Uid<Recipe>,
//!     ingredient: &'a str,
//! }
//!
//! impl<'a> Update<Recipe> for AddIngredient<'a> {
//!     fn filter(&self) -> Document {
//!         doc!{ "_id": self.recipe_id }
//!     }
//!
//!     fn update(&self) -> Document {
//!         doc!{
//!             "$push": {
//!                 "ingredients": self.ingredient
//!             }
//!         }
//!     }
//! }
//!
//! #[derive(Debug, Clone, Copy)]
//! struct GetDescription<'a> {
//!     recipe_id: &'a Uid<Recipe>,
//! }
//!
//! impl<'a> Query<Recipe> for GetDescription<'a> {
//!     type Output = String;
//!
//!     fn filter(&self) -> Document {
//!         doc!{ "_id": self.recipe_id }
//!     }
//!
//!     fn transform(mut raw: Document) -> AvocadoResult<Bson> {
//!         raw.remove_str("description")
//!     }
//!
//!     fn options() -> FindOptions {
//!         FindOptions {
//!             projection: Some(doc!{
//!                 "_id": false,
//!                 "description": true,
//!             }),
//!             ..Default::default()
//!         }
//!     }
//! }
//!
//! # fn main() -> AvocadoResult<()> {
//! #
//! let client = Client::with_uri("mongodb://localhost:27017/")?;
//! let db = client.db("avocado_example_db");
//! let recipes: Collection<Recipe> = db.empty_collection_novalidate()?;
//!
//! // Create a new `Recipe` entity and save it to the database.
//! let r = Recipe {
//!     id: Uid::new_oid()?,
//!     ingredients: vec![String::from("cream"), String::from("sugar")],
//!     description: String::from("mix 'em all together"),
//! };
//! recipes.insert_one(&r)?;
//!
//! // Add an extra ingredient to it.
//! let u = AddIngredient {
//!     recipe_id: &r.id,
//!     ingredient: "strawberries",
//! };
//! recipes.update_one(&u)?;
//!
//! // Retrieve its description in case we already forgot it.
//! let q = GetDescription { recipe_id: &r.id };
//! let description = recipes.find_one(q)?;
//! assert_eq!(description.as_ref(), Some(&r.description));
//! #
//! # Ok(())
//! # }
//! ```
//!
//! ### Preventing NoSQL Injection
//!
//! Basically any database technology is subject to the hazard of DDL/DML
//! (query, modification, and administrative) **injection attacks** if not
//! enough care is taken.
//!
//! In the case of traditional relational DB engines, the use of untrusted
//! (e.g. user-supplied) text in formatted / templated SQL strings, and thus
//! the concatenation of potentially arbitrary executable code with what was
//! intended by the programmer, is the most common source of these security
//! bugs.
//!
//! This is usually mitigated by the use of "prepared statements", meaning
//! that SQL statements are precompiled without any user input, while external
//! values/arguments are marked by special placeholder syntax. Then, for the
//! actual execution of a precompiled statement, parameters are structurally
//! bound to each placeholder in the statement, i.e. by supplying typed values
//! to the DB engine **after** parsing, without textually pasting them together
//! with the query script.
//!
//! Several NoSQL databases, including MongoDB, use a more structured query
//! interface. (In fact, MongoDB queries are almost like the programmer writes
//! plain syntax trees by hand.) This gets rid of **some** of the textual
//! injection attempts. However, in a loosely-typed environment, supplying a
//! query with arbitrary untrusted input can still lead to injection. For
//! example, if one is directly working with the loosely-typed "value tree"
//! representation of JSON, a malicious user might supply a MongoDB query
//! operator document where the programmer was expecting a plain string.
//! An example of this mistake can be found [here](https://ckarande.gitbooks.io/owasp-nodegoat-tutorial/content/tutorial/a1_-_sql_and_nosql_injection.html#2-nosql-injection).
//!
//! Avocado tries to counter these problems by encouraging the **use of static
//! types in queries** as well as domain models. Therefore, any time you are
//! are handling untrusted input, you should build strongly-typed query and/or
//! update objects implementing the [`Query`](ops/trait.Query.html),
//! [`Update`](ops/trait.Update.html), [`Upsert`](ops/trait.Upsert.html),
//! [`Delete`](ops/trait.Delete.html), etc. traits from the ops module,
//! instead of using what is effectively dynamic typing with raw BSON or JSON.
//!
//! Ideally, the "no raw JSON/BSON" rule should be applied **transitively**
//! in (recursive) data structures: no struct or tuple fields, enum variants,
//! map keys, map/set/array values, etc., nor any substructures threof should
//! contain untyped data.
//!
//! ### Crate Features
//!
//! * `schema_validation` (default): enables MongoDB-flavored JSON schema
//!   validation via the `magnet_schema` crate.
//! * `raw_uuid` (default): augments the [`Uid`](uid/struct.Uid.html) type
//!   with convenience methods for working with UUID-based entity/document IDs.

#![doc(html_root_url = "https://docs.rs/avocado/0.3.1")]
#![deny(missing_debug_implementations, missing_copy_implementations,
        trivial_casts, trivial_numeric_casts,
        unsafe_code,
        unstable_features,
        anonymous_parameters, bare_trait_objects,
        variant_size_differences,
        unused_import_braces, unused_qualifications, missing_docs)]
#![allow(clippy::single_match, clippy::match_same_arms, clippy::match_ref_pats,
         clippy::clone_on_ref_ptr, clippy::needless_pass_by_value)]
#![deny(clippy::wrong_pub_self_convention, clippy::used_underscore_binding,
        clippy::stutter, clippy::similar_names, clippy::pub_enum_variant_names,
        clippy::missing_docs_in_private_items,
        clippy::non_ascii_literal, clippy::unicode_not_nfc,
        clippy::result_unwrap_used, clippy::option_unwrap_used,
        clippy::option_map_unwrap_or_else, clippy::option_map_unwrap_or,
        clippy::filter_map,
        clippy::shadow_unrelated, clippy::shadow_reuse, clippy::shadow_same,
        clippy::int_plus_one, clippy::string_add_assign, clippy::if_not_else,
        clippy::invalid_upcast_comparisons,
        clippy::cast_precision_loss, clippy::cast_lossless,
        clippy::cast_possible_wrap, clippy::cast_possible_truncation,
        clippy::mutex_integer, clippy::mut_mut, clippy::items_after_statements,
        clippy::print_stdout, clippy::mem_forget, clippy::maybe_infinite_iter)]

#[macro_use]
extern crate bitflags;
extern crate mongodb;
#[macro_use]
extern crate bson;
#[macro_use]
extern crate serde_derive;
extern crate serde;
extern crate serde_json;
extern crate backtrace;

#[cfg(feature = "schema_validation")]
extern crate magnet_schema;
#[cfg(feature = "raw_uuid")]
extern crate uuid;

pub mod db;
pub mod coll;
pub mod cursor;
pub mod doc;
pub mod uid;
pub mod ops;
pub mod literal;
pub mod error;
pub mod ext;
pub mod prelude;

mod bsn;
mod utils;