1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
mod boxes;
mod writer;

use crate::boxes::*;
use arrayvec::ArrayVec;
use std::io;

/// Config for the serialization (allows setting advanced image properties).
///
/// See [`Aviffy::new`].
pub struct Aviffy {
    premultiplied_alpha: bool,
}

/// Makes an AVIF file given encoded AV1 data (create the data with [`rav1e`](//lib.rs/rav1e))
///
/// `color_av1_data` is already-encoded AV1 image data for the color channels (YUV, RGB, etc.).
/// The color image MUST have been encoded without chroma subsampling AKA YUV444 (`Cs444` in `rav1e`)
/// AV1 handles full-res color so effortlessly, you should never need chroma subsampling ever again.
///
/// Optional `alpha_av1_data` is a monochrome image (`rav1e` calls it "YUV400"/`Cs400`) representing transparency.
/// Alpha adds a lot of header bloat, so don't specify it unless it's necessary.
///
/// `width`/`height` is image size in pixels. It must of course match the size of encoded image data.
/// `depth_bits` should be 8, 10 or 12, depending on how the image was encoded (typically 8).
///
/// Color and alpha must have the same dimensions and depth.
///
/// Data is written (streamed) to `into_output`.
pub fn serialize<W: io::Write>(into_output: W, color_av1_data: &[u8], alpha_av1_data: Option<&[u8]>, width: u32, height: u32, depth_bits: u8) -> io::Result<()> {
    Aviffy::new().write(into_output, color_av1_data, alpha_av1_data, width, height, depth_bits)
}

impl Aviffy {
    pub fn new() -> Self {
        Self {
            premultiplied_alpha: false,
        }
    }

    /// Set whether image's colorspace uses premultiplied alpha, i.e. RGB channels were multiplied by their alpha value,
    /// so that transparent areas are all black. Image decoders will be instructed to undo the premultiplication.
    ///
    /// Premultiplied alpha images usually compress better and tolerate heavier compression, but
    /// may not be supported correctly by less capable AVIF decoders.
    ///
    /// This just sets the configuration property. The pixel data must have already been processed before compression.
    pub fn premultiplied_alpha(&mut self, is_premultiplied: bool) -> &mut Self {
        self.premultiplied_alpha = is_premultiplied;
        self
    }

    /// Makes an AVIF file given encoded AV1 data (create the data with [`rav1e`](//lib.rs/rav1e))
    ///
    /// `color_av1_data` is already-encoded AV1 image data for the color channels (YUV, RGB, etc.).
    /// The color image MUST have been encoded without chroma subsampling AKA YUV444 (`Cs444` in `rav1e`)
    /// AV1 handles full-res color so effortlessly, you should never need chroma subsampling ever again.
    ///
    /// Optional `alpha_av1_data` is a monochrome image (`rav1e` calls it "YUV400"/`Cs400`) representing transparency.
    /// Alpha adds a lot of header bloat, so don't specify it unless it's necessary.
    ///
    /// `width`/`height` is image size in pixels. It must of course match the size of encoded image data.
    /// `depth_bits` should be 8, 10 or 12, depending on how the image was encoded (typically 8).
    ///
    /// Color and alpha must have the same dimensions and depth.
    ///
    /// Data is written (streamed) to `into_output`.
    pub fn write<W: io::Write>(&self, into_output: W, color_av1_data: &[u8], alpha_av1_data: Option<&[u8]>, width: u32, height: u32, depth_bits: u8) -> io::Result<()> {
        let mut image_items = ArrayVec::new();
        let mut iloc_items = ArrayVec::new();
        let mut av1c_items = ArrayVec::new();
        let mut compatible_brands = ArrayVec::new();
        let mut ipma_entries = ArrayVec::new();
        let mut data_chunks = ArrayVec::<[&[u8]; 4]>::new();
        let mut irefs = ArrayVec::new();
        let mut auxc = None;
        let color_image_id = 1;
        let alpha_image_id = 2;
        let high_bitdepth = depth_bits >= 10;
        let twelve_bit = depth_bits >= 12;

        image_items.push(InfeBox {
            id: color_image_id,
            typ: FourCC(*b"av01"),
            name: "",
        });
        // This is redundant, but Chrome wants it, and checks that it matches :(
        av1c_items.push(Av1CBox {
            seq_profile: false,
            seq_level_idx_0: 0,
            seq_tier_0: false,
            high_bitdepth,
            twelve_bit,
            monochrome: false,
            chroma_subsampling_x: false,
            chroma_subsampling_y: false,
            chroma_sample_position: 0,
        });
        ipma_entries.push(IpmaEntry {
            item_id: color_image_id,
            prop_ids: [1, 2].iter().copied().collect(),
        });

        if let Some(alpha_data) = alpha_av1_data {
            image_items.push(InfeBox {
                id: alpha_image_id,
                typ: FourCC(*b"av01"),
                name: "",
            });
            av1c_items.push(Av1CBox {
                seq_profile: false,
                seq_level_idx_0: 0,
                seq_tier_0: false,
                high_bitdepth,
                twelve_bit,
                monochrome: true,
                chroma_subsampling_x: false,
                chroma_subsampling_y: false,
                chroma_sample_position: 0,
            });
            // that's a silly way to add 1 bit of information, isn't it?
            auxc = Some(AuxCBox {
                urn: "urn:mpeg:mpegB:cicp:systems:auxiliary:alpha",
            });
            irefs.push(IrefBox {
                entry: IrefEntryBox {
                    from_id: alpha_image_id,
                    to_id: color_image_id,
                    typ: FourCC(*b"auxl"),
                },
            });
            if self.premultiplied_alpha {
                irefs.push(IrefBox {
                    entry: IrefEntryBox {
                        from_id: color_image_id,
                        to_id: alpha_image_id,
                        typ: FourCC(*b"prem"),
                    },
                });
            }
            ipma_entries.push(IpmaEntry {
                item_id: alpha_image_id,
                prop_ids: [3, 4].iter().copied().collect(),
            });

            // Use interleaved color and alpha, with alpha first.
            // Makes it possible to display partial image.
            iloc_items.push(IlocItem {
                id: color_image_id,
                extents: [
                    IlocExtent {
                        offset: IlocOffset::Relative(alpha_data.len()),
                        len: color_av1_data.len(),
                    },
                ].into(),
            });
            iloc_items.push(IlocItem {
                id: alpha_image_id,
                extents: [
                    IlocExtent {
                        offset: IlocOffset::Relative(0),
                        len: alpha_data.len(),
                    },
                ].into(),
            });
            data_chunks.push(alpha_data);
            data_chunks.push(color_av1_data);
        } else {
            // that's a quirk only for opaque images in Firefox
            compatible_brands.push(FourCC(*b"mif1"));

            iloc_items.push(IlocItem {
                id: color_image_id,
                extents: [
                    IlocExtent {
                        offset: IlocOffset::Relative(0),
                        len: color_av1_data.len(),
                    },
                ].into(),
            });
            data_chunks.push(color_av1_data);
        }

        let mut boxes = AvifFile {
            ftyp: FtypBox {
                major_brand: FourCC(*b"avif"),
                minor_version: 0,
                compatible_brands,
            },
            meta: MetaBox {
                iinf: IinfBox { items: image_items },
                pitm: PitmBox(color_image_id),
                iloc: IlocBox { items: iloc_items },
                iprp: IprpBox {
                    ipco: IpcoBox {
                        // This is redundant data inherited from the HEIF spec.
                        ispe: IspeBox { width, height },
                        av1c: av1c_items,
                        auxc,
                    },
                    // It's not enough to define these properties,
                    // they must be assigned to the image
                    ipma: IpmaBox {
                        entries: ipma_entries,
                    },
                },
                iref: irefs,
            },
            // Here's the actual data. If HEIF wasn't such a kitchen sink, this
            // would have been the only data this file needs.
            mdat: MdatBox {
                data_chunks: &data_chunks,
            },
        };

        boxes.write(into_output)
    }

    pub fn to_vec(&self, color_av1_data: &[u8], alpha_av1_data: Option<&[u8]>, width: u32, height: u32, depth_bits: u8) -> Vec<u8> {
        let mut out = Vec::with_capacity(color_av1_data.len() + alpha_av1_data.map_or(0, |a| a.len()) + 400);
        self.write(&mut out, color_av1_data, alpha_av1_data, width, height, depth_bits).unwrap(); // Vec can't fail
        out
    }
}

/// See [`serialize`] for description. This one makes a `Vec` instead of using `io::Write`.
pub fn serialize_to_vec(color_av1_data: &[u8], alpha_av1_data: Option<&[u8]>, width: u32, height: u32, depth_bits: u8) -> Vec<u8> {
    Aviffy::new().to_vec(color_av1_data, alpha_av1_data, width, height, depth_bits)
}

#[test]
fn test_roundtrip_parse_mp4() {
    let test_img = b"av12356abc";
    let avif = serialize_to_vec(test_img, None, 10, 20, 8);

    let mut ctx = mp4parse::AvifContext::new();
    mp4parse::read_avif(&mut avif.as_slice(), &mut ctx).unwrap();

    assert_eq!(&test_img[..], ctx.primary_item.as_slice());
}

#[test]
fn test_roundtrip_parse_avif() {
    let test_img = [1,2,3,4,5,6];
    let test_alpha = [77,88,99];
    let avif = serialize_to_vec(&test_img, Some(&test_alpha), 10, 20, 8);

    let ctx = avif_parse::read_avif(&mut avif.as_slice()).unwrap();

    assert_eq!(&test_img[..], ctx.primary_item.as_slice());
    assert_eq!(&test_alpha[..], ctx.alpha_item.as_deref().unwrap());
}

#[test]
fn premultiplied_flag() {
    let test_img = [1,2,3,4];
    let test_alpha = [55,66,77,88,99];
    let avif = Aviffy::new().premultiplied_alpha(true).to_vec(&test_img, Some(&test_alpha), 5, 5, 8);

    let ctx = avif_parse::read_avif(&mut avif.as_slice()).unwrap();

    assert!(ctx.premultiplied_alpha);
    assert_eq!(&test_img[..], ctx.primary_item.as_slice());
    assert_eq!(&test_alpha[..], ctx.alpha_item.as_deref().unwrap());
}