1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
use core;
use core::cmp::min;

use conv::{ApproxFrom, ConvAsUtil, ConvUtil, ValueFrom};
use float_ord::sort as sort_floats;

use super::Estimate;

/// Estimate the p-quantile of a sequence of numbers ("population").
///
/// The algorithm uses constant space but does not provide any upper bound on
/// the error. For algorithms that use growing space with bounded error, see
/// the [`quantiles`](https://crates.io/crates/quantiles) crate. They are
/// recommended over this algorithm for small samples.
// This uses the P² algorithm introduced here:
// http://www.cs.wustl.edu/~jain/papers/ftp/psqr.pdf
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Quantile {
    /// Marker heights.
    q: [f64; 5],
    /// Marker positions.
    n: [i64; 5],
    /// Desired marker positions.
    m: [f64; 5],
    /// Increment in desired marker positions.
    dm: [f64; 5],
}

impl Quantile {
    /// Create a new p-quantile estimator.
    ///
    /// Panics if `p` is not between 0 and 1.
    #[inline]
    pub fn new(p: f64) -> Quantile {
        assert!(0. <= p && p <= 1.);
        Quantile {
            q: [0.; 5],
            n: [1, 2, 3, 4, 0],
            m: [1., 1. + 2.*p, 1. + 4.*p, 3. + 2.*p, 5.],
            dm: [0., p/2., p, (1. + p)/2., 1.],
        }
    }

    /// Return the value of `p` for this p-quantile.
    #[inline]
    pub fn p(&self) -> f64 {
        self.dm[2]
    }

    /// Parabolic prediction for marker height.
    #[inline]
    fn parabolic(&self, i: usize, d: f64) -> f64 {
        debug_assert_eq!(d.abs(), 1.);
        let s: i64 = d.approx().unwrap();
        self.q[i] + d / f64::approx_from(self.n[i + 1] - self.n[i - 1]).unwrap()
            * (f64::approx_from(self.n[i] - self.n[i - 1] + s).unwrap()
               * (self.q[i + 1] - self.q[i])
               / f64::approx_from(self.n[i + 1] - self.n[i]).unwrap()
               + f64::approx_from(self.n[i + 1] - self.n[i] - s).unwrap()
               * (self.q[i] - self.q[i - 1])
               / f64::approx_from(self.n[i] - self.n[i - 1]).unwrap())
    }

    /// Linear prediction for marker height.
    #[inline]
    fn linear(&self, i: usize, d: f64) -> f64 {
        debug_assert_eq!(d.abs(), 1.);
        let sum = if d < 0. { i - 1 } else { i + 1 };
        self.q[i] + d * (self.q[sum] - self.q[i])
            / f64::approx_from(self.n[sum] - self.n[i]).unwrap()
    }

    /// Estimate the p-quantile of the population.
    ///
    /// Returns 0 for an empty sample.
    #[inline]
    pub fn quantile(&self) -> f64 {
        if self.len() >= 5 {
            return self.q[2];
        }

        // Estimate quantile by sorting the sample.
        if self.is_empty() {
            return 0.;
        }
        let mut heights: [f64; 4] = [
            self.q[0], self.q[1], self.q[2], self.q[3]
        ];
        let len = usize::value_from(self.len()).unwrap();  // < 5
        sort_floats(&mut heights[..len]);
        let desired_index = ConvUtil::approx_as::<f64>(len).unwrap() * self.p() - 1.;
        let mut index = desired_index.ceil();
        if desired_index == index && index >= 0. {
            let index: usize = index.approx().unwrap();  // < 5
            if index < len - 1 {
                // `q[index]` and `q[index + 1]` are equally valid estimates,
                // by convention we take their average.
                return 0.5*self.q[index] + 0.5*self.q[index + 1];
            }
        }
        index = index.max(0.);
        let mut index: usize = index.approx().unwrap();  // < 5
        index = min(index, len - 1);
        self.q[index]
    }

    /// Return the sample size.
    #[inline]
    pub fn len(&self) -> u64 {
        u64::value_from(self.n[4]).unwrap()  // n[4] >= 0
    }

    /// Determine whether the sample is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }
}

impl core::default::Default for Quantile {
    /// Create a new median estimator.
    fn default() -> Quantile {
        Quantile::new(0.5)
    }
}

impl Estimate for Quantile {
    #[inline]
    fn add(&mut self, x: f64) {
        // n[4] is the sample size.
        if self.n[4] < 5 {
            self.q[usize::value_from(self.n[4]).unwrap()] = x;  // n[4] < 5
            self.n[4] += 1;
            if self.n[4] == 5 {
                sort_floats(&mut self.q);
            }
            return;
        }

        // Find cell k.
        let mut k: usize;
        if x < self.q[0] {
            self.q[0] = x;
            k = 0;
        } else {
            k = 4;
            for i in 1..5 {
                if x < self.q[i] {
                    k = i;
                    break;
                }
            }
            if self.q[4] < x {
                self.q[4] = x;
            }
        };

        // Increment all positions greater than k.
        for i in k..5 {
            self.n[i] += 1;
        }
        for i in 0..5 {
            self.m[i] += self.dm[i];
        }

        // Adjust height of markers.
        for i in 1..4 {
            let d: f64 = self.m[i] - f64::approx_from(self.n[i]).unwrap();
            if d >= 1. && self.n[i + 1] - self.n[i] > 1 ||
               d <= -1. && self.n[i - 1] - self.n[i] < -1 {
                let d = d.signum();
                let q_new = self.parabolic(i, d);
                if self.q[i - 1] < q_new && q_new < self.q[i + 1] {
                    self.q[i] = q_new;
                } else {
                    self.q[i] = self.linear(i, d);
                }
                let delta: i64 = d.approx().unwrap();  // d == +-1
                self.n[i] += delta;
            }
        }
    }

    fn estimate(&self) -> f64 {
        self.quantile()
    }
}

#[test]
fn reference() {
    let observations = [
        0.02, 0.5, 0.74, 3.39, 0.83,
        22.37, 10.15, 15.43, 38.62, 15.92,
        34.60, 10.28, 1.47, 0.40, 0.05,
        11.39, 0.27, 0.42, 0.09, 11.37,
    ];
    let mut q = Quantile::new(0.5);
    for &o in observations.iter() {
        q.add(o);
    }
    assert_eq!(q.n, [1, 6, 10, 16, 20]);
    assert_eq!(q.m, [1., 5.75, 10.50, 15.25, 20.0]);
    assert_eq!(q.len(), 20);
    assert_eq!(q.quantile(), 4.2462394088036435);
}