1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/// Estimate the arithmetic mean and the variance of a sequence of numbers
/// ("population").
///
/// This can be used to estimate the standard error of the mean.
///
///
/// ## Example
///
/// ```
/// use average::Variance;
///
/// let a: Variance = (1..6).map(f64::from).collect();
/// println!("The mean is {} ± {}.", a.mean(), a.error());
/// ```
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Variance {
    /// Estimator of average.
    avg: Mean,
    /// Intermediate sum of squares for calculating the variance.
    sum_2: f64,
}

impl Variance {
    /// Create a new variance estimator.
    #[inline]
    pub fn new() -> Variance {
        Variance { avg: Mean::new(), sum_2: 0. }
    }

    /// Increment the sample size.
    ///
    /// This does not update anything else.
    #[inline]
    fn increment(&mut self) {
        self.avg.increment();
    }

    /// Add an observation given an already calculated difference from the mean
    /// divided by the number of samples, assuming the inner count of the sample
    /// size was already updated.
    ///
    /// This is useful for avoiding unnecessary divisions in the inner loop.
    #[inline]
    fn add_inner(&mut self, delta_n: f64) {
        // This algorithm introduced by Welford in 1962 trades numerical
        // stability for a division inside the loop.
        //
        // See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
        let n = f64::approx_from(self.avg.len()).unwrap();
        self.avg.add_inner(delta_n);
        self.sum_2 += delta_n * delta_n * n * (n - 1.);
    }

    /// Determine whether the sample is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.avg.is_empty()
    }

    /// Estimate the mean of the population.
    ///
    /// Returns 0 for an empty sample.
    #[inline]
    pub fn mean(&self) -> f64 {
        self.avg.mean()
    }

    /// Return the sample size.
    #[inline]
    pub fn len(&self) -> u64 {
        self.avg.len()
    }

    /// Calculate the sample variance.
    ///
    /// This is an unbiased estimator of the variance of the population.
    #[inline]
    pub fn sample_variance(&self) -> f64 {
        if self.avg.len() < 2 {
            return 0.;
        }
        self.sum_2 / f64::approx_from(self.avg.len() - 1).unwrap()
    }

    /// Calculate the population variance of the sample.
    ///
    /// This is a biased estimator of the variance of the population.
    #[inline]
    pub fn population_variance(&self) -> f64 {
        let n = self.avg.len();
        if n < 2 {
            return 0.;
        }
        self.sum_2 / f64::approx_from(n).unwrap()
    }

    /// Estimate the standard error of the mean of the population.
    #[inline]
    pub fn error(&self) -> f64 {
        let n = self.avg.len();
        if n == 0 {
            return 0.;
        }
        (self.sample_variance() / f64::approx_from(n).unwrap()).sqrt()
    }

}

impl core::default::Default for Variance {
    fn default() -> Variance {
        Variance::new()
    }
}

impl Estimate for Variance {
    #[inline]
    fn add(&mut self, sample: f64) {
        self.increment();
        let delta_n = (sample - self.avg.mean())
            / f64::approx_from(self.len()).unwrap();
        self.add_inner(delta_n);
    }

    #[inline]
    fn estimate(&self) -> f64 {
        self.population_variance()
    }
}

impl Merge for Variance {
    /// Merge another sample into this one.
    ///
    ///
    /// ## Example
    ///
    /// ```
    /// use average::{Variance, Merge};
    ///
    /// let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
    /// let (left, right) = sequence.split_at(3);
    /// let avg_total: Variance = sequence.iter().collect();
    /// let mut avg_left: Variance = left.iter().collect();
    /// let avg_right: Variance = right.iter().collect();
    /// avg_left.merge(&avg_right);
    /// assert_eq!(avg_total.mean(), avg_left.mean());
    /// assert_eq!(avg_total.sample_variance(), avg_left.sample_variance());
    /// ```
    #[inline]
    fn merge(&mut self, other: &Variance) {
        // This algorithm was proposed by Chan et al. in 1979.
        //
        // See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
        let len_self = f64::approx_from(self.len()).unwrap();
        let len_other = f64::approx_from(other.len()).unwrap();
        let len_total = len_self + len_other;
        let delta = other.mean() - self.mean();
        self.avg.merge(&other.avg);
        self.sum_2 += other.sum_2 + delta*delta * len_self * len_other / len_total;
    }
}

impl_from_iterator!(Variance);