1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
/// Define a histogram with a number of bins known at compile time.
///
/// ```
/// # extern crate core;
/// # #[macro_use] extern crate average;
/// # fn main() {
/// use average::Histogram;
///
/// define_histogram!(Histogram10, 10);
/// let mut h = Histogram10::with_const_width(0., 100.);
/// for i in 0..100 {
///     h.add(i as f64).unwrap();
/// }
/// assert_eq!(h.bins(), &[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]);
/// # }
/// ```
#[macro_export]
macro_rules! define_histogram {
    ($name:ident, $LEN:expr) => (
        /// The number of bins of the histogram.
        const LEN: usize = $LEN;

        /// A histogram with a number of bins known at compile time.
        #[derive(Debug, Clone)]
        pub struct $name {
            /// The ranges defining the bins of the histogram.
            range: [f64; LEN + 1],
            /// The bins of the histogram.
            bin: [u64; LEN],
        }

        impl $name {
            /// Construct a histogram with constant bin width.
            #[inline]
            pub fn with_const_width(start: f64, end: f64) -> Self {
                let step = (end - start) / (LEN as f64);
                let mut range = [0.; LEN + 1];
                for (i, r) in range.iter_mut().enumerate() {
                    *r = start + step * (i as f64);
                }

                Self {
                    range,
                    bin: [0; LEN],
                }
            }

            /// Construct a histogram from given ranges.
            ///
            /// The ranges are given by an iterator of floats where neighboring
            /// pairs `(a, b)` define a bin for all `x` where `a <= x < b`.
            ///
            /// Fails if the iterator is too short (less than `n + 1` where `n`
            /// is the number of bins), is not sorted or contains `nan`. `inf`
            /// and empty ranges are allowed.
            #[inline]
            pub fn from_ranges<T>(ranges: T) -> Result<Self, ()>
                where T: IntoIterator<Item = f64>
            {
                let mut range = [0.; LEN + 1];
                let mut last_i = 0;
                for (i, r) in ranges.into_iter().enumerate() {
                    if i > LEN {
                        break;
                    }
                    if r.is_nan() {
                        return Err(());
                    }
                    if i > 0 && range[i - 1] > r {
                        return Err(());
                    }
                    range[i] = r;
                    last_i = i;
                }
                if last_i != LEN {
                    return Err(());
                }
                Ok(Self {
                    range,
                    bin: [0; LEN],
                })
            }

            /// Find the index of the bin corresponding to the given sample.
            ///
            /// Fails if the sample is out of range of the histogram.
            #[inline]
            pub fn find(&self, x: f64) -> Result<usize, ()> {
                // We made sure our ranges are valid at construction, so we can
                // safely unwrap.
                match self.range.binary_search_by(|p| p.partial_cmp(&x).unwrap()) {
                    Ok(i) if i < LEN => {
                        Ok(i)
                    },
                    Err(i) if i > 0 && i < LEN + 1 => {
                        Ok(i - 1)
                    },
                    _ => {
                        Err(())
                    },
                }
            }

            /// Add a sample to the histogram.
            ///
            /// Fails if the sample is out of range of the histogram.
            #[inline]
            pub fn add(&mut self, x: f64) -> Result<(), ()> {
                if let Ok(i) = self.find(x) {
                    self.bin[i] += 1;
                    Ok(())
                } else {
                    Err(())
                }
            }

            /// Return the ranges of the histogram.
            #[inline]
            pub fn ranges(&self) -> &[f64] {
                &self.range as &[f64]
            }

            /// Return an iterator over the bins and corresponding ranges:
            /// `((lower, upper), count)`
            #[inline]
            pub fn iter(&self) -> IterHistogram {
                self.into_iter()
            }

            /// Reset all bins to zero.
            #[inline]
            pub fn reset(&mut self) {
                self.bin = [0; LEN];
            }

            /// Return the lower range limit.
            ///
            /// (The corresponding bin might be empty.)
            #[inline]
            pub fn range_min(&self) -> f64 {
                self.range[0]
            }

            /// Return the upper range limit.
            ///
            /// (The corresponding bin might be empty.)
            #[inline]
            pub fn range_max(&self) -> f64 {
                self.range[LEN]
            }
        }

        /// Iterate over all `(range, count)` pairs in the histogram.
        pub struct IterHistogram<'a> {
            remaining_bin: &'a [u64],
            remaining_range: &'a [f64],
        }

        impl<'a> ::core::iter::Iterator for IterHistogram<'a> {
            type Item = ((f64, f64), u64);
            fn next(&mut self) -> Option<((f64, f64), u64)> {
                if let Some((&bin, rest)) = self.remaining_bin.split_first() {
                    let left = self.remaining_range[0];
                    let right = self.remaining_range[1];
                    self.remaining_bin = rest;
                    self.remaining_range = &self.remaining_range[1..];
                    return Some(((left, right), bin));
                }
                None
            }
        }

        impl<'a> ::core::iter::IntoIterator for &'a $name {
            type Item = ((f64, f64), u64);
            type IntoIter = IterHistogram<'a>;
            fn into_iter(self) -> IterHistogram<'a> {
                IterHistogram {
                    remaining_bin: self.bins(),
                    remaining_range: self.ranges(),
                }
            }
        }

        impl $crate::Histogram for $name {
            #[inline]
            fn bins(&self) -> &[u64] {
                &self.bin as &[u64]
            }
        }

        impl<'a> ::core::ops::AddAssign<&'a Self> for $name {
            #[inline]
            fn add_assign(&mut self, other: &Self) {
                assert_eq!(self.range, other.range);
                for (x, y) in self.bin.iter_mut().zip(other.bin.iter()) {
                    *x += y;
                }
            }
        }

        impl ::core::ops::MulAssign<u64> for $name {
            #[inline]
            fn mul_assign(&mut self, other: u64) {
                for x in self.bin.iter_mut() {
                    *x *= other;
                }
            }
        }

        impl $crate::Merge for $name {
            fn merge(&mut self, other: &Self) {
                assert_eq!(self.bin.len(), other.bin.len());
                for (a, b) in self.range.iter().zip(other.range.iter()) {
                    assert_eq!(a, b, "Both histograms must have the same ranges");
                }
                for (a, b) in self.bin.iter_mut().zip(other.bin.iter()) {
                    *a += *b;
                }
            }
        }
    );
}