1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
use core;

use conv::ApproxFrom;


/// Estimate the arithmetic mean of a sequence of numbers ("population").
///
///
/// ## Example
///
/// ```
/// use average::Mean;
///
/// let a: Mean = (1..6).map(Into::into).collect();
/// println!("The mean is {}.", a.mean());
/// ```
#[derive(Debug, Clone)]
pub struct Mean {
    /// Mean value.
    avg: f64,
    /// Sample size.
    n: u64,
}

impl Mean {
    /// Create a new mean estimator.
    #[inline]
    pub fn new() -> Mean {
        Mean { avg: 0., n: 0 }
    }

    /// Add an observation sampled from the population.
    #[inline]
    pub fn add(&mut self, sample: f64) {
        self.increment();
        let delta_n = (sample - self.avg)
            / f64::approx_from(self.n).unwrap();
        self.add_inner(delta_n);
    }

    /// Increment the sample size.
    ///
    /// This does not update anything else.
    #[inline]
    fn increment(&mut self) {
        self.n += 1;
    }

    /// Add an observation given an already calculated difference from the mean
    /// divided by the number of samples, assuming the inner count of the sample
    /// size was already updated.
    ///
    /// This is useful for avoiding unnecessary divisions in the inner loop.
    #[inline]
    fn add_inner(&mut self, delta_n: f64) {
        // This algorithm introduced by Welford in 1962 trades numerical
        // stability for a division inside the loop.
        //
        // See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
        self.avg += delta_n;
    }

    /// Determine whether the sample is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.n == 0
    }

    /// Estimate the mean of the population.
    ///
    /// Returns 0 for an empty sample.
    #[inline]
    pub fn mean(&self) -> f64 {
        self.avg
    }

    /// Return the sample size.
    #[inline]
    pub fn len(&self) -> u64 {
        self.n
    }

    /// Merge another sample into this one.
    ///
    ///
    /// ## Example
    ///
    /// ```
    /// use average::Mean;
    ///
    /// let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
    /// let (left, right) = sequence.split_at(3);
    /// let avg_total: Mean = sequence.iter().map(|x| *x).collect();
    /// let mut avg_left: Mean = left.iter().map(|x| *x).collect();
    /// let avg_right: Mean = right.iter().map(|x| *x).collect();
    /// avg_left.merge(&avg_right);
    /// assert_eq!(avg_total.mean(), avg_left.mean());
    /// ```
    #[inline]
    pub fn merge(&mut self, other: &Mean) {
        // This algorithm was proposed by Chan et al. in 1979.
        //
        // See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
        let len_self = f64::approx_from(self.n).unwrap();
        let len_other = f64::approx_from(other.n).unwrap();
        let len_total = len_self + len_other;
        self.n += other.n;
        self.avg = (len_self * self.avg + len_other * other.avg) / len_total;
        // Chan et al. use
        //
        //     self.avg += delta * len_other / len_total;
        //
        // instead but this results in cancelation if the number of samples are similar.
    }
}

impl core::default::Default for Mean {
    fn default() -> Mean {
        Mean::new()
    }
}

impl core::iter::FromIterator<f64> for Mean {
    fn from_iter<T>(iter: T) -> Mean
        where T: IntoIterator<Item=f64>
    {
        let mut a = Mean::new();
        for i in iter {
            a.add(i);
        }
        a
    }
}