1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/// Estimate a statistic of a sequence of numbers ("population").
pub trait Estimate {
    /// Add an observation sampled from the population.
    fn add(&mut self, x: f64);

    /// Estimate the statistic of the population.
    fn estimate(&self) -> f64;
}

/// Merge with another estimator.
pub trait Merge {
    /// Merge the other estimator into this one.
    ///
    /// Both estimators are assumed to be fed samples from the same population.
    ///
    /// This method is useful for parallelizing the calculation of estimates:
    /// ```
    /// use average::{Estimate, Mean, Merge};
    ///
    /// let data = &[1., 2., 3., 4., 5., 6., 7., 8., 9., 10.];
    ///
    /// let mut thread1 = std::thread::spawn(move || -> Mean {
    ///     let mut avg = Mean::new();
    ///     for &x in &data[..5] {
    ///         avg.add(x);
    ///     }
    ///     avg
    /// });
    /// let mut thread2 = std::thread::spawn(move || -> Mean {
    ///     let mut avg = Mean::new();
    ///     for &x in &data[5..] {
    ///         avg.add(x);
    ///     }
    ///     avg
    /// });
    ///
    /// let mut avg = thread1.join().unwrap();
    /// avg.merge(&thread2.join().unwrap());
    /// assert_eq!(avg.mean(), 5.5);
    /// ```
    fn merge(&mut self, other: &Self);
}

/// Calculate the multinomial variance. Relevant for histograms.
#[inline(always)]
fn multinomal_variance(n: f64, n_tot_inv: f64) -> f64 {
    n * (1. - n * n_tot_inv)
}

/// Get the bins and ranges from a histogram.
pub trait Histogram:
    where for<'a> &'a Self: IntoIterator<Item = ((f64, f64), u64)>
{
    /// Return the bins of the histogram.
    fn bins(&self) -> &[u64];

    /// Estimate the variance for the given bin.
    ///
    /// The square root of this estimates the error of the bin count.
    #[inline]
    fn variance(&self, bin: usize) -> f64 {
        let count = self.bins()[bin];
        let sum: u64 = self.bins().iter().sum();
        multinomal_variance(count as f64, 1./(sum as f64))
    }

    /// Return an iterator over the bins normalized by the bin widths.
    #[inline]
    fn normalized_bins(&self) -> IterNormalized<<&Self as IntoIterator>::IntoIter> {
        IterNormalized { histogram_iter: self.into_iter() }
    }

    /// Return an iterator over the bin widths.
    #[inline]
    fn widths(&self) -> IterWidths<<&Self as IntoIterator>::IntoIter> {
        IterWidths { histogram_iter: self.into_iter() }
    }

    /// Return an iterator over the bin centers.
    #[inline]
    fn centers(&self) -> IterBinCenters<<&Self as IntoIterator>::IntoIter> {
        IterBinCenters { histogram_iter: self.into_iter() }
    }

    /// Return an iterator over the bin variances.
    ///
    /// This is more efficient than calling `variance()` for each bin.
    #[inline]
    fn variances(&self) -> IterVariances<<&Self as IntoIterator>::IntoIter> {
        let sum: u64 = self.bins().iter().sum();
        IterVariances {
            histogram_iter: self.into_iter(),
            sum_inv: 1./(sum as f64)
        }
    }
}

/// Iterate over the bins normalized by bin width.
pub struct IterNormalized<T>
    where T: Iterator<Item = ((f64, f64), u64)>
{
    histogram_iter: T,
}

impl<T> Iterator for IterNormalized<T>
    where T: Iterator<Item = ((f64, f64), u64)>
{
    type Item = f64;

    #[inline]
    fn next(&mut self) -> Option<f64> {
        self.histogram_iter.next().map(|((a, b), count)| (count as f64) / (b - a))
    }
}

/// Iterate over the widths of the bins.
pub struct IterWidths<T>
    where T: Iterator<Item = ((f64, f64), u64)>
{
    histogram_iter: T,
}

impl<T> Iterator for IterWidths<T>
    where T: Iterator<Item = ((f64, f64), u64)>
{
    type Item = f64;

    #[inline]
    fn next(&mut self) -> Option<f64> {
        self.histogram_iter.next().map(|((a, b), _)| b - a)
    }
}

/// Iterate over the bin centers.
pub struct IterBinCenters<T>
    where T: Iterator<Item = ((f64, f64), u64)>
{
    histogram_iter: T,
}

impl<T> Iterator for IterBinCenters<T>
    where T: Iterator<Item = ((f64, f64), u64)>
{
    type Item = f64;

    #[inline]
    fn next(&mut self) -> Option<f64> {
        self.histogram_iter.next().map(|((a, b), _)| 0.5 * (a + b))
    }
}

/// Iterate over the variances.
pub struct IterVariances<T>
    where T: Iterator<Item = ((f64, f64), u64)>
{
    histogram_iter: T,
    sum_inv: f64,
}

impl<T> Iterator for IterVariances<T>
    where T: Iterator<Item = ((f64, f64), u64)>
{
    type Item = f64;

    #[inline]
    fn next(&mut self) -> Option<f64> {
        self.histogram_iter.next()
            .map(|(_, n)| multinomal_variance(n as f64, self.sum_inv))
    }
}