1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
use crate::{
    Error,
    Result,
    Status,

    AsNativeStr,

    ffi,
    check_init,
    vec::{
        CVec,
        FVecMut,
    },
};

use std::{
    fmt::{Display, Formatter, Result as FmtResult},
    str::FromStr,
};

/**
 * Spectral description function
 */
pub trait SpecMethod: AsNativeStr {}

/**
 * Spectral shape descriptor
 *
 * The following descriptors are described in:
 *
 * Geoffroy Peeters, A large set of audio features for sound description (similarity and classification) in the CUIDADO project, CUIDADO I.S.T. Project Report 2004 ([pdf](http://www.ircam.fr/anasyn/peeters/ARTICLES/Peeters_2003_cuidadoaudiofeatures.pdf))
 */
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum SpecShape {
    /**
     * Spectral centroid
     *
     * The spectral centroid represents the barycenter of the spectrum.
     *
     * __Note__: This function returns the result in bin. To get the spectral centroid in Hz, `bintofreq()` should be used.
     */
    Centroid,

    /**
     * Spectral spread
     *
     * The spectral spread is the variance of the spectral distribution around its centroid.
     *
     * See also [Standard deviation](http://en.wikipedia.org/wiki/Standard_deviation) on Wikipedia.
     */
    Spread,

    /**
     *  Spectral skewness
     *
     * Similarly, the skewness is computed from the third order moment of the spectrum. A negative skewness indicates more energy on the lower part of the spectrum. A positive skewness indicates more energy on the high frequency of the spectrum.
     *
     * See also [Skewness](http://en.wikipedia.org/wiki/Skewness) on Wikipedia.
     */
    Skewness,

    /**
     * Spectral kurtosis
     *
     * The kurtosis is a measure of the flatness of the spectrum, computed from the fourth order moment.
     *
     * See also [Kurtosis](http://en.wikipedia.org/wiki/Kurtosis) on Wikipedia.
     */
    Kurtosis,

    /**
     * Spectral slope
     *
     * The spectral slope represents decreasing rate of the spectral amplitude, computed using a linear regression.
     */
    Slope,

    /**
     * Spectral decrease
     *
     * The spectral decrease is another representation of the decreasing rate, based on perceptual criteria.
     */
    Decrease,

    /**
     * Spectral roll-off
     *
     * This function returns the bin number below which 95% of the spectrum energy is found.
     */
    Rolloff,
}

impl SpecMethod for SpecShape {}

impl AsNativeStr for SpecShape {
    fn as_native_str(&self) -> &'static str {
        use self::SpecShape::*;

        match self {
            Centroid => "centroid\0",
            Spread => "spread\0",
            Skewness => "skewness\0",
            Kurtosis => "kurtosis\0",
            Slope => "slope\0",
            Decrease => "decrease\0",
            Rolloff => "rolloff\0",
        }
    }
}

impl AsRef<str> for SpecShape {
    fn as_ref(&self) -> &str {
        self.as_rust_str()
    }
}

impl Display for SpecShape {
    fn fmt(&self, f: &mut Formatter) -> FmtResult {
        self.as_ref().fmt(f)
    }
}

impl FromStr for SpecShape {
    type Err = Error;

    fn from_str(src: &str) -> Result<Self> {
        use self::SpecShape::*;

        Ok(match src {
            "centroid" => Centroid,
            "spread" => Spread,
            "skewness" => Skewness,
            "kurtosis" => Kurtosis,
            "slope" => Slope,
            "decrease" => Decrease,
            "rolloff" => Rolloff,
            _ => return Err(Error::InvalidArg),
        })
    }
}

/**
 * Spectral description object
 */
pub struct SpecDesc {
    specdesc: *mut ffi::aubio_specdesc_t,
}

impl Drop for SpecDesc {
    fn drop(&mut self) {
        unsafe { ffi::del_aubio_specdesc(self.specdesc) }
    }
}

impl SpecDesc {
    /**
     * Creation of a spectral description object
     *
     * - `method` Spectral description method
     * - `buf_size` Length of the input spectrum frame
     */
    pub fn new<M: SpecMethod>(method: M, buf_size: usize) -> Result<Self> {
        let specdesc = unsafe {
            ffi::new_aubio_specdesc(
                method.as_native_cstr(),
                buf_size as ffi::uint_t,
            )
        };

        check_init(specdesc)?;

        Ok(Self { specdesc })
    }

    /**
     * Execute spectral description function on a spectral frame
     *
     * Generic function to compute spectral description.
     */
    pub fn do_<'i, 'o, I, O>(&mut self, fftgrain: I, desc: O) -> Status
    where
        I: Into<CVec<'i>>,
        O: Into<FVecMut<'o>>,
    {
        let fftgrain = fftgrain.into();
        let mut desc = desc.into();

        desc.check_size(1)?;

        unsafe {
            ffi::aubio_specdesc_do(
                self.specdesc,
                fftgrain.as_ptr(),
                desc.as_mut_ptr(),
            );
        }
        Ok(())
    }

    /**
     * Execute spectral description function on a spectral frame
     *
     * Generic function to compute spectral description.
     */
    pub fn do_result<'i, I>(&mut self, fftgrain: I) -> Result<f32>
    where
        I: Into<CVec<'i>>,
    {
        let mut desc = [0f32; 1];
        self.do_(fftgrain, &mut desc)?;
        Ok(desc[0])
    }
}

#[cfg(test)]
mod test {
    use crate::*;

    #[test]
    fn test() {
        const WIN: usize = 1024; // window size

        let in_ = carr!(WIN); // input buffer
        let mut out = farr!(1); // output spectral descriptor

        let mut o = SpecDesc::new(OnsetMode::Energy, WIN).unwrap();
        o.do_(in_.as_ref(), out.as_mut()).unwrap();

        let mut o = SpecDesc::new(OnsetMode::Hfc, WIN).unwrap();
        o.do_(in_.as_ref(), out.as_mut()).unwrap();

        let mut o = SpecDesc::new(OnsetMode::Complex, WIN).unwrap();
        o.do_(in_.as_ref(), out.as_mut()).unwrap();

        let mut o = SpecDesc::new(OnsetMode::Phase, WIN).unwrap();
        o.do_(in_.as_ref(), out.as_mut()).unwrap();

        let mut o = SpecDesc::new(OnsetMode::Kl, WIN).unwrap();
        o.do_(in_.as_ref(), out.as_mut()).unwrap();

        let mut o = SpecDesc::new(OnsetMode::Mkl, WIN).unwrap();
        o.do_(in_.as_ref(), out.as_mut()).unwrap();

        let mut o = SpecDesc::new(SpecShape::Centroid, WIN).unwrap();
        o.do_(in_.as_ref(), out.as_mut()).unwrap();

        let mut o = SpecDesc::new(SpecShape::Spread, WIN).unwrap();
        o.do_(in_.as_ref(), out.as_mut()).unwrap();

        let mut o = SpecDesc::new(SpecShape::Skewness, WIN).unwrap();
        o.do_(in_.as_ref(), out.as_mut()).unwrap();

        let mut o = SpecDesc::new(SpecShape::Kurtosis, WIN).unwrap();
        o.do_(in_.as_ref(), out.as_mut()).unwrap();

        let mut o = SpecDesc::new(SpecShape::Slope, WIN).unwrap();
        o.do_(in_.as_ref(), out.as_mut()).unwrap();

        let mut o = SpecDesc::new(SpecShape::Decrease, WIN).unwrap();
        o.do_(in_.as_ref(), out.as_mut()).unwrap();

        let mut o = SpecDesc::new(SpecShape::Rolloff, WIN).unwrap();
        o.do_(in_.as_ref(), out.as_mut()).unwrap();
    }
}