1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

//! Implements a container type providing RefCell-like semantics for objects
//! shared across threads.
//!
//! RwLock is traditionally considered to be the |Sync| analogue of RefCell.
//! However, for consumers that can guarantee that they will never mutably
//! borrow the contents concurrently with immutable borrows, an RwLock is
//! overkill, and has key disadvantages:
//! * Performance: Even the fastest existing implementation of RwLock (that of
//!   parking_lot) performs at least two atomic operations during immutable
//!   borrows. This makes mutable borrows significantly cheaper than immutable
//!   borrows, leading to weird incentives when writing performance-critical
//!   code.
//! * Features: Implementing AtomicRefCell on top of RwLock makes it impossible
//!   to implement useful things like AtomicRef{,Mut}::map.
//!
//! As such, we re-implement RefCell semantics from scratch with a single atomic
//! reference count. The primary complication of this scheme relates to keeping
//! things in a consistent state when one thread performs an illegal borrow and
//! panics. Since an AtomicRefCell can be accessed by multiple threads, and since
//! panics are recoverable, we need to ensure that an illegal (panicking) access by
//! one thread does not lead to undefined behavior on other, still-running threads.
//!
//! So we represent things as follows:
//! * Any value with the high bit set (so half the total refcount space) indicates
//!   a mutable borrow.
//! * Mutable borrows perform an atomic compare-and-swap, swapping in the high bit
//!   if the current value is zero. If the current value is non-zero, the thread
//!   panics and the value is left undisturbed.
//! * Immutable borrows perform an atomic increment. If the new value has the high
//!   bit set, the thread panics. The incremented refcount is left as-is, since it
//!   still represents a valid mutable borrow. When the mutable borrow is released,
//!   the refcount is set unconditionally to zero, clearing any stray increments by
//!   panicked threads.
//!
//! There are a few additional purely-academic complications to handle overflow,
//! which are documented in the implementation.
//!
//! The rest of this module is mostly derived by copy-pasting the implementation of
//! RefCell and fixing things up as appropriate. Certain non-threadsafe methods
//! have been removed. We segment the concurrency logic from the rest of the code to
//! keep the tricky parts small and easy to audit.

#![allow(unsafe_code)]
#![deny(missing_docs)]

use std::cell::UnsafeCell;
use std::cmp;
use std::fmt;
use std::fmt::Debug;
use std::ops::{Deref, DerefMut};
use std::sync::atomic;
use std::sync::atomic::AtomicUsize;

/// A threadsafe analogue to RefCell.
pub struct AtomicRefCell<T: ?Sized> {
    borrow: AtomicUsize,
    value: UnsafeCell<T>,
}

impl<T> AtomicRefCell<T> {
    /// Creates a new `AtomicRefCell` containing `value`.
    #[inline]
    pub fn new(value: T) -> AtomicRefCell<T> {
        AtomicRefCell {
            borrow: AtomicUsize::new(0),
            value: UnsafeCell::new(value),
        }
    }

    /// Consumes the `AtomicRefCell`, returning the wrapped value.
    #[inline]
    pub fn into_inner(self) -> T {
        debug_assert!(self.borrow.load(atomic::Ordering::Acquire) == 0);
        unsafe { self.value.into_inner() }
    }
}

impl<T: ?Sized> AtomicRefCell<T> {
    /// Immutably borrows the wrapped value.
    #[inline]
    pub fn borrow(&self) -> AtomicRef<T> {
        AtomicRef {
            value: unsafe { &*self.value.get() },
            borrow: AtomicBorrowRef::new(&self.borrow),
        }
    }

    /// Mutably borrows the wrapped value.
    #[inline]
    pub fn borrow_mut(&self) -> AtomicRefMut<T> {
        AtomicRefMut {
            value: unsafe { &mut *self.value.get() },
            borrow: AtomicBorrowRefMut::new(&self.borrow),
        }
    }

    /// Returns a raw pointer to the underlying data in this cell.
    ///
    /// External synchronization is needed to avoid data races when dereferencing
    /// the pointer.
    #[inline]
    pub fn as_ptr(&self) -> *mut T {
        self.value.get()
    }
}

//
// Core synchronization logic. Keep this section small and easy to audit.
//

const HIGH_BIT: usize = !(::std::usize::MAX >> 1);
const MAX_FAILED_BORROWS: usize = HIGH_BIT + (HIGH_BIT >> 1);

struct AtomicBorrowRef<'b> {
    borrow: &'b AtomicUsize,
}

impl<'b> AtomicBorrowRef<'b> {
    #[inline]
    fn new(borrow: &'b AtomicUsize) -> Self {
        let new = borrow.fetch_add(1, atomic::Ordering::Acquire) + 1;

        // If the new count has the high bit set, panic. The specifics of how
        // we panic is interesting for soundness, but irrelevant for real programs.
        if new & HIGH_BIT != 0 {
            Self::do_panic(borrow, new);
        }

        AtomicBorrowRef { borrow: borrow }
    }

    #[cold]
    #[inline(never)]
    fn do_panic(borrow: &'b AtomicUsize, new: usize) {
        if new == HIGH_BIT {
            // We overflowed into the reserved upper half of the refcount
            // space. Before panicking, decrement the refcount to leave things
            // in a consistent immutable-borrow state.
            //
            // This can basically only happen if somebody forget()s AtomicRefs
            // in a tight loop.
            borrow.fetch_sub(1, atomic::Ordering::Release);
            panic!("too many immutable borrows");
        } else if new >= MAX_FAILED_BORROWS {
            // During the mutable borrow, an absurd number of threads have
            // incremented the refcount and panicked. To avoid hypothetically
            // wrapping the refcount, we abort the process once a certain
            // threshold is reached.
            //
            // This requires billions of threads to have panicked already, and
            // so will never happen in a real program.
            println!("Too many failed borrows");
            ::std::process::exit(1);
        } else {
            // This is the normal case, and the only one which should happen
            // in a real program.
            panic!("already mutably borrowed");
        }
    }
}

impl<'b> Drop for AtomicBorrowRef<'b> {
    #[inline]
    fn drop(&mut self) {
        let old = self.borrow.fetch_sub(1, atomic::Ordering::Release);
        // This assertion is technically incorrect in the case where another
        // thread hits the hypothetical overflow case, since we might observe
        // the refcount before it fixes it up (and panics). But that never will
        // never happen in a real program, and this is a debug_assert! anyway.
        debug_assert!(old & HIGH_BIT == 0);
    }
}

struct AtomicBorrowRefMut<'b> {
    borrow: &'b AtomicUsize,
}

impl<'b> Drop for AtomicBorrowRefMut<'b> {
    #[inline]
    fn drop(&mut self) {
        self.borrow.store(0, atomic::Ordering::Release);
    }
}

impl<'b> AtomicBorrowRefMut<'b> {
    #[inline]
    fn new(borrow: &'b AtomicUsize) -> AtomicBorrowRefMut<'b> {
        // Use compare-and-swap to avoid corrupting the immutable borrow count
        // on illegal mutable borrows.
        let old = match borrow.compare_exchange(0, HIGH_BIT, atomic::Ordering::Acquire, atomic::Ordering::Relaxed) {
            Ok(x) => x,
            Err(x) => x,
        };
        assert!(old == 0, "already {} borrowed", if old & HIGH_BIT == 0 { "immutably" } else { "mutably" });
        AtomicBorrowRefMut {
            borrow: borrow
        }
    }
}

unsafe impl<T: ?Sized + Send + Sync> Send for AtomicRefCell<T> {}
unsafe impl<T: ?Sized + Send + Sync> Sync for AtomicRefCell<T> {}

//
// End of core synchronization logic. No tricky thread stuff allowed below
// this point.
//

impl<T: Clone> Clone for AtomicRefCell<T> {
    #[inline]
    fn clone(&self) -> AtomicRefCell<T> {
        AtomicRefCell::new(self.borrow().clone())
    }
}

impl<T: Default> Default for AtomicRefCell<T> {
    #[inline]
    fn default() -> AtomicRefCell<T> {
        AtomicRefCell::new(Default::default())
    }
}

impl<T: ?Sized + PartialEq> PartialEq for AtomicRefCell<T> {
    #[inline]
    fn eq(&self, other: &AtomicRefCell<T>) -> bool {
        *self.borrow() == *other.borrow()
    }
}

impl<T: ?Sized + Eq> Eq for AtomicRefCell<T> {}

impl<T: ?Sized + PartialOrd> PartialOrd for AtomicRefCell<T> {
    #[inline]
    fn partial_cmp(&self, other: &AtomicRefCell<T>) -> Option<cmp::Ordering> {
        self.borrow().partial_cmp(&*other.borrow())
    }
}

impl<T: ?Sized + Ord> Ord for AtomicRefCell<T> {
    #[inline]
    fn cmp(&self, other: &AtomicRefCell<T>) -> cmp::Ordering {
        self.borrow().cmp(&*other.borrow())
    }
}

impl<T> From<T> for AtomicRefCell<T> {
    fn from(t: T) -> AtomicRefCell<T> {
        AtomicRefCell::new(t)
    }
}

impl<'b> Clone for AtomicBorrowRef<'b> {
    #[inline]
    fn clone(&self) -> AtomicBorrowRef<'b> {
        AtomicBorrowRef::new(self.borrow)
    }
}

/// A wrapper type for an immutably borrowed value from an `AtomicRefCell<T>`.
pub struct AtomicRef<'b, T: ?Sized + 'b> {
    value: &'b T,
    borrow: AtomicBorrowRef<'b>,
}


impl<'b, T: ?Sized> Deref for AtomicRef<'b, T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        self.value
    }
}

impl<'b, T: ?Sized> AtomicRef<'b, T> {
    /// Copies an `AtomicRef`.
    #[inline]
    pub fn clone(orig: &AtomicRef<'b, T>) -> AtomicRef<'b, T> {
        AtomicRef {
            value: orig.value,
            borrow: orig.borrow.clone(),
        }
    }

    /// Make a new `AtomicRef` for a component of the borrowed data.
    #[inline]
    pub fn map<U: ?Sized, F>(orig: AtomicRef<'b, T>, f: F) -> AtomicRef<'b, U>
        where F: FnOnce(&T) -> &U
    {
        AtomicRef {
            value: f(orig.value),
            borrow: orig.borrow,
        }
    }
}

impl<'b, T: ?Sized> AtomicRefMut<'b, T> {
    /// Make a new `AtomicRefMut` for a component of the borrowed data, e.g. an enum
    /// variant.
    #[inline]
    pub fn map<U: ?Sized, F>(orig: AtomicRefMut<'b, T>, f: F) -> AtomicRefMut<'b, U>
        where F: FnOnce(&mut T) -> &mut U
    {
        AtomicRefMut {
            value: f(orig.value),
            borrow: orig.borrow,
        }
    }
}

/// A wrapper type for a mutably borrowed value from an `AtomicRefCell<T>`.
pub struct AtomicRefMut<'b, T: ?Sized + 'b> {
    value: &'b mut T,
    borrow: AtomicBorrowRefMut<'b>,
}

impl<'b, T: ?Sized> Deref for AtomicRefMut<'b, T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        self.value
    }
}

impl<'b, T: ?Sized> DerefMut for AtomicRefMut<'b, T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut T {
        self.value
    }
}

impl<'b, T: ?Sized + Debug + 'b> Debug for AtomicRef<'b, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.value.fmt(f)
     }
}

impl<'b, T: ?Sized + Debug + 'b> Debug for AtomicRefMut<'b, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.value.fmt(f)
    }
}