1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#![cfg_attr(feature = "better-docs",
    cfg_attr(all(), doc = include_str!("../README.md")),
)]
#![no_std]
#![forbid(unsafe_code)]

/// One of the main macros of the crate.
///
/// `#[async_fn::bare_future]` allows to express the actual `Future` return type
/// of an `async fn`.
///
/// Implementation-wise, and thus, semantic-wise, what this macro does is very
/// simple: it removes the `async` from the `async fn`, and wraps the function
/// body within an `async move { … }` block (except for the statements inside
/// the [`before_async!`] eager prelude).
///
/// The point of doing this is to reduce the rightwards drift that an explicit
/// `async move` block requires.
///
/// ## Example / unsugaring
///
/// ```rust
/// use ::async_fn::prelude::*;
/// # use ::std::sync::Arc;
///
/// async fn foo(/* … */) { /* … */ }
/// async fn bar(/* … */) -> i32 {
///     // …
/// #   42
/// }
///
/// struct Foo {
///     // …
/// }
///
/// impl Foo {
///     #[bare_future]
///     async fn thread_safe_async_method(&self) -> impl Fut<'_, i32> + Send {
///         foo(/* … */).await;
///         bar(/* … */).await
///     }
/// }
/// # #[cfg(any())]
/// /// The above is sugar for:
/// impl Foo {
///     fn thread_safe_async_method(&self) -> impl Fut<'_, i32> + Send {
///         async move {
///             foo(/* … */).await;
///             bar(/* … */).await
///         }
///     }
/// }
/// ```
///
/// The advantages of using `#[bare_future]` over an `async move` body are thus
/// slim, but non-negligible:
///
///   - The function is still marked as / appears as `async fn`, which makes it
///     easier to grep for;
///   - The extra rightward drift in the `async move { … }` body is avoided.
///
/// # Extra features and benefits
///
/// ## 1 — The `'args` lifetime
///
/// > ⚠️ Not implemented yet. ⚠️
///
/// A `[bare_future] async fn` function will **feature a magical `'args`
/// lifetime** (parameter) which will represent the "intersection" of the
/// lifetimes / spans of usability of *each* function parameter. This makes it
/// so:
///
/// ```rust
/// # const _: &str = stringify! {
/// #[bare_future]
/// async fn fname(/* args… */) -> impl Fut<'args, RetTy>
/// /// Has the same semantics as:
/// async fn fname(/* args… */) -> RetTy
/// # };
/// ```
///
/// ## 2 — The `before_async!` eager prelude
///
///   - This is for an opposite goal to that of using `'args`, mainly, when
///     wanting to yield a `'static + Future`.
///
/// See [`before_async!`] for more info.
#[doc(inline)]
pub use ::async_fn_proc_macros::bare_future;

/// Convenience shorthand alias.
///
/// ```rust
/// # const _: &str = stringify! {
/// trait /* alias */ Fut<'fut, Ret> = ::core::future::Future<Output = Ret> + 'fut;
/// # };
/// ```
pub
trait Fut<'fut, Ret>
where
    Self : 'fut + ::core::future::Future<Output = Ret>,
{}

impl<'fut, Ret, F : ?Sized> Fut<'fut, Ret>
    for F
where
    Self : 'fut + ::core::future::Future<Output = Ret>,
{}

/// Helper macro to express **eagerly** executed code (before the `async`
/// suspension) when inside [`#[async_fn::bare_future]`][`bare_future`]-annotated function.
///
/// ### Eager _vs._ lazy / suspended code?
///
/// <details>
///
/// Consider:
///
/// ```rust
/// use ::async_fn::prelude::*;
///
/// /// Consider:
/// async fn lazy_print() -> i32 {
///     println!("Hi");
///     42
/// }
/// /// i.e.,
/// fn lazy_print_unsugared() -> impl Fut<'static, i32> {
///     /* return */ async move { // <- lazy future / suspension point
///         println!("Hi"); // <- this runs _after_ returning
///         42
///     }
/// }
///
/// /// vs.
/// fn eager_print() -> impl Fut<'static, i32> {
///     println!("Hi"); // <- this runs _before_ returning
///     /* return */ async move { // <- lazy future / suspension point
///         42
///     }
/// }
/// ```
///
/// Both `lazy_print().await` and `eager_print().await` shall behave the same
/// insofar that they'll both print `"Hi"` and then resolve to `42`.
///
/// That being said, when doing:
///
/// ```rust,ignore
/// let future = mk_future();
/// println!("Bye");
/// assert_eq!(future.await, 42);
/// ```
///
/// then, depending on whether `mk_future` refers to `eager_print` or
/// `lazy_print`, the `println!("Hi")` statement will, respectively, be
/// executed before returning the future **or be part of the not-yet-polled
/// future**. That is, `"Hi"` will be printed before `"Bye"` or _after_.
///
/// While this may look like a contrived example, when `future` is spawned /
/// to be polled within a parallel executor (_e.g._,
/// `mt_executor::spawn(mk_future()); println!("Bye");`), then in the eager case
/// we'll have the `"Hi"` statement definitely occur _before_ the `"Bye"`
/// statement, whereas in the lazy case there will be no clear ordering between
/// the two: `"Hi"` and `"Bye"` could appear in any order, or even intermingled!
///
/// Now, imagine if `"Hi"` were a dereference of a short-lived borrow, (such as
/// `let x = *borrowed_integer;` or `Arc::clone(borrowed_arc)`), and if
/// `"Bye"` were a statement dropping the borrowee. While in the eager case we'd
/// have a clear happens-before relationship that'd guarantee soundness, in the
/// lazy case we wouldn't have it, and it would thus be very well possible to
/// suffer from race conditions or a use-after-free! In Rust this means we'll
/// hit borrow-checker errors.
///
/// So this whole thing has to do with lifetimes:
///
///   - either the returned future is short-lived; this is the case of:
///
///       - `async fn …(borrowed_arc: &Arc<…>) -> i32`
///
///       - or `fn …_unsugared(borrowed_arc: &'_ Arc<…>) -> impl Fut<'_, i32>`,
///     )
///
///     Such futures are thus incompatible with a long-lived `spawn()`.
///
///   - or the future is to be compatible with long-lived `spawn()`s (it must be
///     `'static`, and often, also `Send`); this is the case of:
///
///       - `fn …(borrowed_arc: &'_ Arc<…>) -> impl Fut<'static, i32>`
///
///     and for that to actually pass borrowck **any dereference in the `fn`
///     body** (such as `Arc::clone(borrowed_arc)`) **has to be done
///     _eagerly_**:
///
///     ```rust,ignore
///     fn some_future(borrowed_arc: &'_ Arc<Stuff>) -> impl Fut<'static, Ret> {
///         let owned_arc = Arc::clone(borrowed_arc);
///         async move /* owned_arc */ {
///             stuff(&owned_arc).await
///         }
///     }
///     ```
///
/// But in the case of a `#[async_fn::bare_future] async fn`, the whole function body
/// is automagically wrapped within an `async` suspension!
///
/// That's thus the purpose of this macro:
///
/// </details>
///
/// ## Usage
///
/// When inside the body of a `#[async_fn::bare_future]` `async fn`, this macro can be
/// called **as the very first statement of the function's body**, with
/// statements inside it (any other usage is an error, or might error in future
/// semver-compatible releases ⚠️).
///
/// That will make the statements be executed _eagerly_ / before the `async`
/// suspension (hence the name of the macro).
///
/// ```rust
/// use ::async_fn::prelude::*;
/// use ::std::sync::Arc;
/// #
/// # pub enum Error {}
///
/// struct FooInner { /* … */ }
/// impl FooInner {
///     async fn stuff(&self) -> Result<i32, Error> {
///         /* … */
/// #       Ok(42)
///     }
/// }
///
/// pub struct Foo {
///     inner: Arc<FooInner>,
/// }
///
///
/// impl Foo {
///     #[async_fn::bare_future]
///     pub async fn stuff(&self) -> impl Fut<'static, Result<(), Error>> {
///         before_async! {
///             let inner = Arc::clone(&self.inner);
///         }
///         let x = inner.stuff().await?; // <- await point.
///         println!("{}", x);
///         Ok(())
///     }
/// }
/// ```
#[macro_export]
macro_rules! before_async {(@)=>();(
        $($_:tt)*
) => (
    $crate::__::core::compile_error! {
        "\
            this can only be called as the first statement of a \
            `#[async_fn::bare_future]`-annotated function.\
        "
    }
)}

pub
mod prelude {
    #[doc(no_inline)]
    pub use crate::{
        bare_future,
        before_async,
        Fut,
    };

    /// Alternative name for [`bare_future`] 🙃
    pub use bare_future as barefoot;
}

#[doc(hidden)] /** Not part of the public API */ pub
mod __ {
    pub use ::core;

    pub mod before_async {
        pub use crate::before_async;
    }
}

#[cfg_attr(feature = "ui-tests",
    cfg_attr(all(), doc = include_str!("compile_fail_tests.md")),
)]
mod _compile_fail_tests {}