1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
use std::collections::VecDeque;
use std::io::Cursor;
use std::mem;

use async_trait::async_trait;
use tokio::io::{AsyncRead, AsyncReadExt, AsyncWrite, AsyncWriteExt};

use protocol::{Error, Parcel, Settings};

#[async_trait]
pub trait Transport {
    async fn process_data<R: AsyncRead + Send + Unpin>(
        &mut self,
        read: &mut R,
        settings: &Settings,
    ) -> Result<(), Error>;

    async fn receive_raw_packet(&mut self) -> Result<Option<Vec<u8>>, Error>;

    async fn send_raw_packet<W: AsyncWrite + Send + Unpin>(
        &mut self,
        write: &mut W,
        packet: &[u8],
        settings: &Settings,
    ) -> Result<(), Error>;
}

/// The type that we use to describe packet sizes.
pub type PacketSize = u32;

/// The current state.
#[derive(Clone, Debug)]
enum State {
    /// We are awaiting packet size bytes.
    AwaitingSize(Vec<u8>),
    AwaitingPacket {
        size: PacketSize,
        received_data: Vec<u8>,
    },
}

/// A simple transport.
#[derive(Clone, Debug)]
pub struct Simple {
    state: State,
    packets: VecDeque<Vec<u8>>,
}

impl Simple {
    pub fn new() -> Self {
        Simple {
            state: State::AwaitingSize(Vec::new()),
            packets: VecDeque::new(),
        }
    }

    async fn process_bytes(&mut self, bytes: &[u8], settings: &Settings) -> Result<(), Error> {
        let mut read = Cursor::new(bytes);

        loop {
            match self.state.clone() {
                State::AwaitingSize(mut size_bytes) => {
                    let remaining_bytes = mem::size_of::<PacketSize>() - size_bytes.len();

                    let mut received_bytes = vec![0; remaining_bytes];
                    let bytes_read = std::io::Read::read(&mut read, &mut received_bytes)?;
                    received_bytes.drain(bytes_read..);

                    assert_eq!(received_bytes.len(), bytes_read);

                    size_bytes.extend(received_bytes.into_iter());

                    if size_bytes.len() == mem::size_of::<PacketSize>() {
                        let mut size_buffer = Cursor::new(size_bytes);

                        let size = PacketSize::read(&mut size_buffer, settings).unwrap();

                        // We are now ready to receive packet data.
                        self.state = State::AwaitingPacket {
                            size,
                            received_data: Vec::new(),
                        }
                    } else {
                        // Still waiting to receive the whole packet.
                        self.state = State::AwaitingSize(size_bytes);
                        break;
                    }
                }
                State::AwaitingPacket {
                    size,
                    mut received_data,
                } => {
                    let remaining_bytes = (size as usize) - received_data.len();
                    assert!(remaining_bytes > 0);

                    let mut received_bytes = vec![0; remaining_bytes];
                    let bytes_read = read.read(&mut received_bytes).await?;
                    received_bytes.drain(bytes_read..);

                    assert_eq!(received_bytes.len(), bytes_read);

                    received_data.extend(received_bytes.into_iter());

                    assert!(received_data.len() <= (size as usize));

                    if (size as usize) == received_data.len() {
                        self.packets.push_back(received_data);

                        // Start reading the next packet.
                        self.state = State::AwaitingSize(Vec::new());
                    } else {
                        // Keep reading the current packet.
                        self.state = State::AwaitingPacket {
                            size,
                            received_data,
                        };
                        break;
                    }
                }
            }
        }

        Ok(())
    }
}

const BUFFER_SIZE: usize = 10000;

#[async_trait]
impl Transport for Simple {
    async fn process_data<R: AsyncRead + Send + Unpin>(
        &mut self,
        read: &mut R,
        settings: &Settings,
    ) -> Result<(), Error> {
        // Load the data into a temporary buffer before we process it.
        loop {
            let mut buffer = [0u8; BUFFER_SIZE];
            let bytes_read = read.read(&mut buffer).await.unwrap();
            let buffer = &buffer[0..bytes_read];

            if bytes_read == 0 {
                break;
            } else {
                self.process_bytes(buffer, settings).await?;

                // We didn't fill the whole buffer so stop now.
                if bytes_read != BUFFER_SIZE {
                    break;
                }
            }
        }

        Ok(())
    }

    async fn send_raw_packet<W: AsyncWrite + Send + Unpin>(
        &mut self,
        write: &mut W,
        packet: &[u8],
        settings: &Settings,
    ) -> Result<(), Error> {
        let mut w = Cursor::new(Vec::<u8>::new());
        // Prefix the packet size.
        (packet.len() as PacketSize).write(&mut w, settings)?;
        // Write the packet data.
        w.write_all(&packet).await?;

        write.write(&w.into_inner()).await?;

        Ok(())
    }

    async fn receive_raw_packet(&mut self) -> Result<Option<Vec<u8>>, Error> {
        Ok(self.packets.pop_front())
    }
}