1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
//! A collection of lazy initialized values that are created by `Future`s.
//!
//! [OnceCell]'s API is similar to the [`once_cell`](https://crates.io/crates/once_cell) crate,
//! [`std::cell::OnceCell`], or [`std::sync::OnceLock`].  It provides an async version of a cell
//! that can only be initialized once, permitting tasks to wait on the initialization if it is
//! already running instead of racing multiple initialization tasks.
//!
//! Unlike threads, tasks can be cancelled at any point where they block.  [OnceCell] deals with
//! this by allowing another initializer to run if the task currently initializing the cell is
//! dropped.  This also allows for fallible initialization using [OnceCell::get_or_try_init] and
//! for the initializing `Future` to contain borrows or use references to thread-local data.
//!
//! [Lazy] takes the opposite approach: it wraps a single `Future` which is cooperatively run to
//! completion by any polling task.  This requires that the initialization function be independent
//! of the calling context, but will never restart an initializing function just because the
//! surrounding task was cancelled.  Using a trait object (`Pin<Box<dyn Future>>`) for the future
//! may simplify using this type in data structures.
//!
//! # Overhead
//!
//! Both cells use two `usize`s to store state and do not retain any allocations after
//! initialization is complete.  Allocations are only required if there is contention.
//!
//! Accessing an already-initialized cell is as cheap as possible: only one atomic load with
//! Acquire ordering.
//!
//! # Features
//!
//! ## The `critical-section` feature
//!
//! If this feature is enabled, the [`critical-section`](https://crates.io/crates/critical-section)
//! crate is used instead of an `std` mutex.  You must depend on that crate and select a locking
//! implementation; see [its documentation](https://docs.rs/critical-section/) for details.
//!
//! ## The `std` feature
//!
//! This is currently a no-op, but might in the future be used to expose APIs that depends on
//! types only in `std`.  It does *not* control the locking implementation.

// How it works:
//
// The basic design goal of async_once_cell is to make the simpler, more common cases as fast and
// efficient as possible while reverting to a reasonably performant implementation when that's not
// possible.
//
// The fastest path is "access an already-initialized cell": this takes one atomic load with
// acquire ordering, and doing it with any less is not possible without extreme, platform-specific
// mechanisms (for example, the membarrier system call on Linux) which would make filling the cell
// significantly more expensive.
//
// The fast path for filling a cell is when there is no contention.  The types in this crate will
// not allocate in this scenario, which proceeds according to this summary:
//
//  1. A single task runs get_or_try_init, which calls Inner::initialize(true)
//  2. Inner::state transitions from NEW to QINIT_BIT, and a QuickInitGuard is returned
//  3. The init future is run and completes successfully (possibly after yielding)
//  4. The value is written to the UnsafeCell
//  5. Inner::state transitions from QINIT_BIT to READY_BIT during QuickInitGuard's Drop
//
// If the init future fails (due to returning an error or a panic), then:
//  4. The UnsafeCell remains uninitialized
//  5. Inner::state transitions from QINIT_BIT to NEW during QuickInitGuard's Drop
//
// The fast path does not use Inner::queue at all, and only needs to check it once the cell
// transitions to the ready state (in order to handle the edge case where a queue was created but
// was not actually needed).
//
// Slow path:
//
// If a second task attempts to start initialization, it will not succeed in transitioning
// Inner::state from NEW to QINIT_BIT.  Instead, it will create a Queue on the heap, storing it in
// Inner::queue and creating a QueueRef pointing at it.  This Queue will hold the Wakers for all
// tasks that attempt to perform initialization.  When a QuickInitGuard or QueueHead is dropped,
// all tasks are woken and will either proceed directly to obtaining a reference (if initialization
// was successful) or race to create a new QueueHead, with losers re-queuing in a new Waker list.
//
// Once a Queue has been created for an Inner, it remains valid as long as either a reference
// exists (as determined by the reference count in Inner::state) or the state is not ready.  A
// QueueRef represents one reference to the Queue (similar to how Arc<Queue> would act).
//
// The wake-up behavior used here is optimized for the common case where an initialization function
// succeeds and a mass wake-up results in all woken tasks able to proceed with returning a
// reference to the just-stored value.  If initialization fails, it would in theory be possible to
// only wake one of the pending tasks, since only one task will be able to make useful progress by
// becoming the new QueueHead.  However, to avoid a lost wakeup, this would require tracking wakers
// and removing them when a QueueRef is dropped.  The extra overhead required to maintain the list
// of wakers is not worth the extra complexity and locking in the common case where the QueueRef
// was dropped due to a successful initialization.

#![cfg_attr(feature = "critical-section", no_std)]
extern crate alloc;

#[cfg(any(not(feature = "critical-section"), feature = "std"))]
extern crate std;

use alloc::{boxed::Box, vec, vec::Vec};

use core::{
    cell::UnsafeCell,
    convert::Infallible,
    fmt,
    future::{Future, IntoFuture},
    marker::{PhantomData, PhantomPinned},
    mem::{self, ManuallyDrop, MaybeUninit},
    panic::{RefUnwindSafe, UnwindSafe},
    pin::Pin,
    ptr,
    sync::atomic::{AtomicPtr, AtomicUsize, Ordering},
    task,
};

#[cfg(feature = "critical-section")]
struct Mutex<T> {
    data: UnsafeCell<T>,
    locked: core::sync::atomic::AtomicBool,
}

#[cfg(feature = "critical-section")]
impl<T> Mutex<T> {
    const fn new(data: T) -> Self {
        Mutex { data: UnsafeCell::new(data), locked: core::sync::atomic::AtomicBool::new(false) }
    }
}

#[cfg(not(feature = "critical-section"))]
use std::sync::Mutex;

#[cfg(feature = "critical-section")]
fn with_lock<T, R>(mutex: &Mutex<T>, f: impl FnOnce(&mut T) -> R) -> R {
    struct Guard<'a, T>(&'a Mutex<T>);
    impl<'a, T> Drop for Guard<'a, T> {
        fn drop(&mut self) {
            self.0.locked.store(false, Ordering::Relaxed);
        }
    }
    critical_section::with(|_| {
        if mutex.locked.swap(true, Ordering::Relaxed) {
            // Note: this can in theory happen if the delegated Clone impl on a Waker provided in
            // an initialization context turns around and tries to initialize the same cell.  This
            // is an absurd thing to do, but it's safe so we can't assume nobody will ever do it.
            panic!("Attempted reentrant locking");
        }
        let guard = Guard(mutex);
        // Safety: we just checked that we were the one to set `locked` to true, and the data in
        // this Mutex will only be accessed while the lock is true.  We use Relaxed memory ordering
        // instead of Acquire/Release because critical_section::with itself must provide an
        // Acquire/Release barrier around its closure, and also guarantees that there will not be
        // more than one such closure executing at a time.
        let rv = unsafe { f(&mut *mutex.data.get()) };
        drop(guard);
        rv
    })
}

#[cfg(not(feature = "critical-section"))]
fn with_lock<T, R>(mutex: &Mutex<T>, f: impl FnOnce(&mut T) -> R) -> R {
    f(&mut *mutex.lock().unwrap())
}

/// A cell which can be written to only once.
///
/// This allows initialization using an async closure that borrows from its environment.
///
/// ```
/// use std::rc::Rc;
/// use std::sync::Arc;
/// use async_once_cell::OnceCell;
///
/// # async fn run() {
/// let non_send_value = Rc::new(4);
/// let shared = Arc::new(OnceCell::new());
///
/// let value : &i32 = shared.get_or_init(async {
///     *non_send_value
/// }).await;
/// assert_eq!(value, &4);
///
/// // A second init is not called
/// let second = shared.get_or_init(async {
///     unreachable!()
/// }).await;
/// assert_eq!(second, &4);
///
/// # }
/// # use std::future::Future;
/// # struct NeverWake;
/// # impl std::task::Wake for NeverWake {
/// #     fn wake(self: Arc<Self>) {}
/// # }
/// # let w = Arc::new(NeverWake).into();
/// # let mut cx = std::task::Context::from_waker(&w);
/// # assert!(std::pin::pin!(run()).poll(&mut cx).is_ready());
/// ```
pub struct OnceCell<T> {
    value: UnsafeCell<MaybeUninit<T>>,
    inner: Inner,
    _marker: PhantomData<T>,
}

// Safety: our UnsafeCell should be treated like an RwLock<T>
unsafe impl<T: Sync + Send> Sync for OnceCell<T> {}
unsafe impl<T: Send> Send for OnceCell<T> {}
impl<T> Unpin for OnceCell<T> {}
impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceCell<T> {}
impl<T: UnwindSafe> UnwindSafe for OnceCell<T> {}

/// Monomorphic portion of the state of a OnceCell or Lazy.
///
/// The top two bits of state are flags (READY_BIT and QINIT_BIT) that define the state of the
/// cell.  The rest of the bits count the number of QueueRef objects associated with this Inner.
///
/// The queue pointer starts out as NULL.  If contention is detected during the initialization of
/// the object, it is initialized to a Box<Queue>, and will remain pointing at that Queue until the
/// state has changed to ready with zero active QueueRefs.
struct Inner {
    state: AtomicUsize,
    queue: AtomicPtr<Queue>,
}

impl fmt::Debug for Inner {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        let state = self.state.load(Ordering::Relaxed);
        let queue = self.queue.load(Ordering::Relaxed);
        fmt.debug_struct("Inner")
            .field("ready", &(state & READY_BIT != 0))
            .field("quick_init", &(state & QINIT_BIT != 0))
            .field("refcount", &(state & (QINIT_BIT - 1)))
            .field("queue", &queue)
            .finish()
    }
}

/// Transient state during initialization
///
/// Unlike the sync OnceCell, this cannot be a linked list through stack frames, because Futures
/// can be freed at any point by any thread.  Instead, this structure is allocated on the heap
/// during the first initialization call and freed after the value is set (or when the OnceCell is
/// dropped, if the value never gets set).
struct Queue {
    wakers: Mutex<Option<Vec<task::Waker>>>,
}

/// A reference to the Queue held inside an Inner.
///
/// This is somewhat like Arc<Queue>, the refcount is held in Inner instead of Queue so it can be
/// freed once the cell's initialization is complete.
///
/// Holding a QueueRef guarantees that either:
///  - queue points to a valid Queue that will not be freed until this QueueRef is dropped
///  - inner.state is ready
///
/// The value of QueueRef::queue may be dangling or null if inner.state was ready at the time the
/// value was loaded.  The holder of a QueueRef must observe a non-ready state prior to using
/// queue; because this is already done by all holders of QueueRef for other reasons, this second
/// check is not included in Inner::initialize.
///
/// The creation of a QueueRef performs an Acquire ordering operation on Inner::state; its Drop
/// performs a Release on the same value.
///
/// The value of QueueRef::queue may also become dangling during QueueRef's Drop impl even when the
/// lifetime 'a is still valid, so a raw pointer is required for correctness.
struct QueueRef<'a> {
    inner: &'a Inner,
    queue: *const Queue,
}
// Safety: the queue is a reference (only the lack of a valid lifetime requires it to be a pointer)
unsafe impl<'a> Sync for QueueRef<'a> {}
unsafe impl<'a> Send for QueueRef<'a> {}

/// A write guard for an active initialization of the associated UnsafeCell
///
/// This is created on the fast (no-allocation) path only.
#[derive(Debug)]
struct QuickInitGuard<'a> {
    inner: &'a Inner,
    ready: bool,
}

/// A Future that waits for acquisition of a QueueHead
struct QueueWaiter<'a> {
    guard: Option<QueueRef<'a>>,
}

/// A write guard for the active initialization of the associated UnsafeCell
///
/// Creation of a QueueHead must always be done with the Queue's Mutex held.  If no QuickInitGuard
/// exists, the task creating the QueueHead is the task that transitions the contents of the Mutex
/// from None to Some; it must verify QINIT_BIT is unset with the lock held.
///
/// Only QueueHead::drop may transition the contents of the Mutex from Some to None.
///
/// Dropping this object will wake all tasks that have blocked on the currently-running
/// initialization.
struct QueueHead<'a> {
    guard: QueueRef<'a>,
}

const NEW: usize = 0x0;
const QINIT_BIT: usize = 1 + (usize::MAX >> 2);
const READY_BIT: usize = 1 + (usize::MAX >> 1);
const EMPTY_STATE: usize = !0;

impl Inner {
    const fn new() -> Self {
        Inner { state: AtomicUsize::new(NEW), queue: AtomicPtr::new(ptr::null_mut()) }
    }

    const fn new_ready() -> Self {
        Inner { state: AtomicUsize::new(READY_BIT), queue: AtomicPtr::new(ptr::null_mut()) }
    }

    /// Initialize the queue (if needed) and return a waiter that can be polled to get a QueueHead
    /// that gives permission to initialize the OnceCell.
    ///
    /// The Queue referenced in the returned QueueRef will not be freed until the cell is populated
    /// and all references have been dropped.  If any references remain, further calls to
    /// initialize will return the existing queue.
    #[cold]
    fn initialize(&self, try_quick: bool) -> Result<QueueWaiter, QuickInitGuard> {
        if try_quick {
            if self
                .state
                .compare_exchange(NEW, QINIT_BIT, Ordering::Acquire, Ordering::Relaxed)
                .is_ok()
            {
                // On success, we know that there were no other QueueRef objects active, and we
                // just set QINIT_BIT which makes us the only party allowed to create a QueueHead.
                // This remains true even if the queue is created later.
                return Err(QuickInitGuard { inner: self, ready: false });
            }
        }

        // Increment the queue's reference count.  This ensures that queue won't be freed until we exit.
        let prev_state = self.state.fetch_add(1, Ordering::Acquire);

        // Note: unlike Arc, refcount overflow is impossible.  The only way to increment the
        // refcount is by calling poll on the Future returned by get_or_try_init, which is !Unpin.
        // The poll call requires a Pinned pointer to this Future, and the contract of Pin requires
        // Drop to be called on any !Unpin value that was pinned before the memory is reused.
        // Because the Drop impl of QueueRef decrements the refcount, an overflow would require
        // more than (usize::MAX / 4) QueueRef objects in memory, which is impossible as these
        // objects take up more than 4 bytes.

        let mut guard = QueueRef { inner: self, queue: self.queue.load(Ordering::Acquire) };

        if guard.queue.is_null() && prev_state & READY_BIT == 0 {
            let wakers = Mutex::new(None);

            // Race with other callers of initialize to create the queue
            let new_queue = Box::into_raw(Box::new(Queue { wakers }));

            match self.queue.compare_exchange(
                ptr::null_mut(),
                new_queue,
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_null) => {
                    // Normal case: it was actually set.  The Release part of AcqRel orders this
                    // with all Acquires on the queue.
                    guard.queue = new_queue;
                }
                Err(actual) => {
                    // we lost the race, but we have the (non-null) value now.
                    guard.queue = actual;
                    // Safety: we just allocated it, and nobody else has seen it
                    unsafe {
                        drop(Box::from_raw(new_queue));
                    }
                }
            }
        }
        Ok(QueueWaiter { guard: Some(guard) })
    }

    fn set_ready(&self) {
        // This Release pairs with the Acquire any time we check READY_BIT, and ensures that the
        // writes to the cell's value are visible to the cell's readers.
        let prev_state = self.state.fetch_or(READY_BIT, Ordering::Release);

        debug_assert_eq!(prev_state & READY_BIT, 0, "Invalid state: someone else set READY_BIT");
    }
}

impl<'a> Drop for QueueRef<'a> {
    fn drop(&mut self) {
        // Release the reference to queue
        let prev_state = self.inner.state.fetch_sub(1, Ordering::Release);
        // Note: as of now, self.queue may be invalid

        let curr_state = prev_state - 1;
        if curr_state == READY_BIT || curr_state == READY_BIT | QINIT_BIT {
            // We just removed the only waiter on an initialized cell.  This means the
            // queue is no longer needed.  Acquire the queue again so we can free it.
            let queue = self.inner.queue.swap(ptr::null_mut(), Ordering::Acquire);
            if !queue.is_null() {
                // Safety: the last guard is being freed, and queue is only used by guard-holders.
                // Due to the swap, we are the only one who is freeing this particular queue.
                unsafe {
                    drop(Box::from_raw(queue));
                }
            }
        }
    }
}

impl<'a> Drop for QuickInitGuard<'a> {
    fn drop(&mut self) {
        // When our QuickInitGuard was created, Inner::state was changed to QINIT_BIT.  If it is
        // either unchanged or has changed back to that value, we can finish on the fast path.
        let fast_target = if self.ready { READY_BIT } else { NEW };
        if self
            .inner
            .state
            .compare_exchange(QINIT_BIT, fast_target, Ordering::Release, Ordering::Relaxed)
            .is_ok()
        {
            // Because the exchange succeeded, we know there are no active QueueRefs and so no
            // wakers need to be woken.  If self.ready is true, the Release ordering pairs with
            // the Acquire on another thread's access to state to check READY_BIT.

            if self.ready {
                // It's possible (though unlikely) that someone created the queue but abandoned
                // their QueueRef before we finished our poll, resulting in us not observing
                // them.  No wakes are needed in this case because there are no waiting tasks,
                // but we should still clean up the allocation.
                let queue = self.inner.queue.swap(ptr::null_mut(), Ordering::Relaxed);
                if !queue.is_null() {
                    // Synchronize with both the fetch_sub that lowered the refcount and the
                    // queue initialization.
                    core::sync::atomic::fence(Ordering::Acquire);
                    // Safety: we observed no active QueueRefs, and queue is only used by
                    // guard-holders.  Due to the swap, we are the only one who is freeing this
                    // particular queue.
                    unsafe {
                        drop(Box::from_raw(queue));
                    }
                }
            }
            return;
        }

        // Slow path: get a guard, create the QueueHead we should have been holding, then drop it
        // so that the tasks are woken as intended.  This is needed regardless of if we succeeded
        // or not - either waiters need to run init themselves, or they need to read the value we
        // set.
        //
        // The guard is guaranteed to have been created with no QueueHead available because
        // QINIT_BIT is still set.
        let waiter = self.inner.initialize(false).expect("Got a QuickInitGuard in slow init");
        let guard = waiter.guard.expect("No guard available even without polling");

        // Safety: the guard holds a place on the waiter list, and we know READY_BIT was not yet
        // set when Inner::initialize was called, so the queue must be present.  It will remain
        // valid until guard is dropped.
        debug_assert!(!guard.queue.is_null(), "Queue must not be NULL when READY_BIT is not set");
        let queue = unsafe { &*guard.queue };

        with_lock(&queue.wakers, |lock| {
            // Creating a QueueHead requires that the Mutex contain Some.  While this is likely
            // already true, it is not guaranteed because the first concurrent thread might have
            // been preempted before it was able to start its first QueueWaiter::poll call.  Ensure
            // that nobody else can grab the QueueHead between when we release QINIT_BIT and when
            // our QueueHead is dropped.
            lock.get_or_insert_with(Vec::new);

            // We must clear QINIT_BIT, which will allow someone else to take the head position
            // once we drop it.
            //
            // If our initialization was successful, we also need to set READY_BIT.  These
            // operations can be combined because we know the current state of both bits (only
            // QINIT_BIT is set) and because READY_BIT == 2 * QINIT_BIT.
            //
            // Ordering for QINIT_BIT is handled by the Mutex, but ordering for READY_BIT is not;
            // it needs Release ordering to ensure that the UnsafeCell's value is visible prior to
            // that bit being observed as set by other threads.
            let prev_state = if self.ready {
                self.inner.state.fetch_add(QINIT_BIT, Ordering::Release)
            } else {
                self.inner.state.fetch_sub(QINIT_BIT, Ordering::Relaxed)
            };
            debug_assert_eq!(
                prev_state & (QINIT_BIT | READY_BIT),
                QINIT_BIT,
                "Invalid state during QuickInitGuard drop"
            );
        });

        // Safety: we just took the head position
        drop(QueueHead { guard })
    }
}

impl Drop for Inner {
    fn drop(&mut self) {
        let queue = *self.queue.get_mut();
        if !queue.is_null() {
            // Safety: nobody else could have a reference
            unsafe {
                drop(Box::from_raw(queue));
            }
        }
    }
}

impl<'a> Future for QueueWaiter<'a> {
    type Output = Option<QueueHead<'a>>;
    fn poll(
        mut self: Pin<&mut Self>,
        cx: &mut task::Context<'_>,
    ) -> task::Poll<Option<QueueHead<'a>>> {
        let guard = self.guard.as_ref().expect("Polled future after finished");

        // Fast path for waiters that get notified after the value is set
        let state = guard.inner.state.load(Ordering::Acquire);
        if state & READY_BIT != 0 {
            return task::Poll::Ready(None);
        }

        // Safety: the guard holds a place on the waiter list and we just checked that the state is
        // not ready, so the queue is non-null and will remain valid until guard is dropped.
        let queue = unsafe { &*guard.queue };
        let rv = with_lock(&queue.wakers, |lock| {
            // Another task might have set READY_BIT between our optimistic lock-free check and our
            // lock acquisition.  Don't return a QueueHead unless we know for sure that we are
            // allowed to initialize.
            let state = guard.inner.state.load(Ordering::Acquire);
            if state & READY_BIT != 0 {
                return task::Poll::Ready(None);
            }

            match lock.as_mut() {
                None if state & QINIT_BIT == 0 => {
                    // take the head position and start a waker queue
                    *lock = Some(Vec::new());

                    task::Poll::Ready(Some(()))
                }
                None => {
                    // Someone else has a QuickInitGuard; they will wake us when they finish.
                    let waker = cx.waker().clone();
                    *lock = Some(vec![waker]);
                    task::Poll::Pending
                }
                Some(wakers) => {
                    // Wait for the QueueHead to be dropped
                    let my_waker = cx.waker();
                    for waker in wakers.iter() {
                        if waker.will_wake(my_waker) {
                            return task::Poll::Pending;
                        }
                    }
                    wakers.push(my_waker.clone());
                    task::Poll::Pending
                }
            }
        });

        // Safety: If rv is Ready/Some, we know:
        //  - we are holding a QueueRef (in guard) that prevents state from being 0
        //  - creating a new QuickInitGuard requires the state to be 0
        //  - we just checked QINIT_BIT and saw there isn't a QuickInitGuard active
        //  - the queue was None, meaning there are no current QueueHeads
        //  - we just set the queue to Some, claiming the head
        //
        // If rv is Ready/None, this is due to READY_BIT being set.
        // If rv is Pending, we have a waker in the queue.
        rv.map(|o| o.map(|()| QueueHead { guard: self.guard.take().unwrap() }))
    }
}

impl<'a> Drop for QueueHead<'a> {
    fn drop(&mut self) {
        // Safety: if queue is not null, then it is valid as long as the guard is alive, and a
        // QueueHead is never created with a NULL queue (that requires READY_BIT to have been set
        // inside Inner::initialize, and in that case no QueueHead objects will be created).
        let queue = unsafe { &*self.guard.queue };

        // Take the waker queue, allowing another QueueHead to be created if READY_BIT is unset.
        let wakers =
            with_lock(&queue.wakers, Option::take).expect("QueueHead dropped without a waker list");

        for waker in wakers {
            waker.wake();
        }
    }
}

impl<T> OnceCell<T> {
    /// Creates a new empty cell.
    pub const fn new() -> Self {
        Self {
            value: UnsafeCell::new(MaybeUninit::uninit()),
            inner: Inner::new(),
            _marker: PhantomData,
        }
    }

    /// Creates a new cell with the given contents.
    pub const fn new_with(value: T) -> Self {
        Self {
            value: UnsafeCell::new(MaybeUninit::new(value)),
            inner: Inner::new_ready(),
            _marker: PhantomData,
        }
    }

    /// Gets the contents of the cell, initializing it with `init` if the cell was empty.
    ///
    /// Many tasks may call `get_or_init` concurrently with different initializing futures, but
    /// it is guaranteed that only one future will be executed as long as the resulting future is
    /// polled to completion.
    ///
    /// If `init` panics, the panic is propagated to the caller, and the cell remains uninitialized.
    ///
    /// If the Future returned by this function is dropped prior to completion, the cell remains
    /// uninitialized, and another `init` function will be started (if any are available).
    ///
    /// Attempting to reentrantly initialize the cell from `init` will generally cause a deadlock;
    /// the reentrant call will immediately yield and wait for the pending initialization.  If the
    /// actual initialization can complete despite this (for example, by polling multiple futures
    /// and discarding incomplete ones instead of polling them to completion), then the cell will
    /// successfully be initialized.
    pub async fn get_or_init(&self, init: impl Future<Output = T>) -> &T {
        match self.get_or_try_init(async move { Ok::<T, Infallible>(init.await) }).await {
            Ok(t) => t,
            Err(e) => match e {},
        }
    }

    /// Gets the contents of the cell, initializing it with `init` if the cell was empty.   If the
    /// cell was empty and `init` failed, an error is returned.
    ///
    /// Many tasks may call `get_or_init` and/or `get_or_try_init` concurrently with different
    /// initializing futures, but it is guaranteed that only one of the futures will be executed as
    /// long as the resulting future is polled to completion.
    ///
    /// If `init` panics or returns an error, the panic or error is propagated to the caller, and
    /// the cell remains uninitialized.  In this case, another `init` function from a concurrent
    /// caller will be selected to execute, if one is available.
    ///
    /// If the Future returned by this function is dropped prior to completion, the cell remains
    /// uninitialized, and another `init` function will be started (if any are available).
    ///
    /// Attempting to reentrantly initialize the cell from `init` will generally cause a deadlock;
    /// the reentrant call will immediately yield and wait for the pending initialization.  If the
    /// actual initialization can complete despite this (for example, by polling multiple futures
    /// and discarding incomplete ones instead of polling them to completion), then the cell will
    /// successfully be initialized.
    pub async fn get_or_try_init<E>(
        &self,
        init: impl Future<Output = Result<T, E>>,
    ) -> Result<&T, E> {
        let state = self.inner.state.load(Ordering::Acquire);

        if state & READY_BIT == 0 {
            self.init_slow(state == NEW, init).await?;
        }

        // Safety: initialized on all paths
        Ok(unsafe { (*self.value.get()).assume_init_ref() })
    }

    #[cold]
    async fn init_slow<E>(
        &self,
        try_quick: bool,
        init: impl Future<Output = Result<T, E>>,
    ) -> Result<(), E> {
        match self.inner.initialize(try_quick) {
            Err(mut guard) => {
                // Try to proceed assuming no contention.
                let value = init.await?;
                // Safety: the guard acts like QueueHead even if there is contention.
                unsafe {
                    (*self.value.get()).write(value);
                }
                guard.ready = true;
                drop(guard);
            }
            Ok(guard) => {
                if let Some(init_lock) = guard.await {
                    // We hold the QueueHead, so we know that nobody else has successfully run an init
                    // poll and that nobody else can start until it is dropped.  On error, panic, or
                    // drop of this Future, the head will be passed to another waiter.
                    let value = init.await?;

                    // Safety: We still hold the head, so nobody else can write to value
                    unsafe {
                        (*self.value.get()).write(value);
                    }
                    // mark the cell ready before giving up the head
                    init_lock.guard.inner.set_ready();
                    // drop of QueueHead notifies other Futures
                    // drop of QueueRef (might) free the Queue
                } else {
                    // someone initialized it while waiting on the queue
                }
            }
        }
        Ok(())
    }

    /// Gets the reference to the underlying value.
    ///
    /// Returns `None` if the cell is empty or being initialized. This method never blocks.
    pub fn get(&self) -> Option<&T> {
        let state = self.inner.state.load(Ordering::Acquire);

        if state & READY_BIT == 0 {
            None
        } else {
            Some(unsafe { (*self.value.get()).assume_init_ref() })
        }
    }

    /// Gets a mutable reference to the underlying value.
    pub fn get_mut(&mut self) -> Option<&mut T> {
        let state = *self.inner.state.get_mut();
        if state & READY_BIT == 0 {
            None
        } else {
            Some(unsafe { self.value.get_mut().assume_init_mut() })
        }
    }

    /// Takes the value out of this `OnceCell`, moving it back to an uninitialized state.
    pub fn take(&mut self) -> Option<T> {
        let state = *self.inner.state.get_mut();
        self.inner = Inner::new();
        if state & READY_BIT == 0 {
            None
        } else {
            Some(unsafe { self.value.get_mut().assume_init_read() })
        }
    }

    /// Consumes the OnceCell, returning the wrapped value. Returns None if the cell was empty.
    pub fn into_inner(mut self) -> Option<T> {
        self.take()
    }
}

impl<T: fmt::Debug> fmt::Debug for OnceCell<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        let value = self.get();
        fmt.debug_struct("OnceCell").field("value", &value).field("inner", &self.inner).finish()
    }
}

impl<T> Drop for OnceCell<T> {
    fn drop(&mut self) {
        let state = *self.inner.state.get_mut();
        if state & READY_BIT != 0 {
            unsafe {
                self.value.get_mut().assume_init_drop();
            }
        }
    }
}

impl<T> Default for OnceCell<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T> From<T> for OnceCell<T> {
    fn from(value: T) -> Self {
        Self::new_with(value)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use alloc::sync::Arc;
    use core::pin::pin;

    #[derive(Default)]
    struct CountWaker(AtomicUsize);
    impl alloc::task::Wake for CountWaker {
        fn wake(self: Arc<Self>) {
            self.0.fetch_add(1, Ordering::Relaxed);
        }
    }

    struct CmdWait<'a>(&'a AtomicUsize);
    impl Future for CmdWait<'_> {
        type Output = usize;
        fn poll(self: Pin<&mut Self>, _: &mut task::Context<'_>) -> task::Poll<usize> {
            match self.0.load(Ordering::Relaxed) {
                0 => task::Poll::Pending,
                n => task::Poll::Ready(n),
            }
        }
    }

    impl Drop for CmdWait<'_> {
        fn drop(&mut self) {
            if self.0.load(Ordering::Relaxed) == 6 {
                panic!("Panic on drop");
            }
        }
    }

    async fn maybe(cmd: &AtomicUsize, cell: &OnceCell<usize>) -> Result<usize, usize> {
        cell.get_or_try_init(async {
            match dbg!(CmdWait(cmd).await) {
                1 => Err(1),
                2 => Ok(2),
                _ => unreachable!(),
            }
        })
        .await
        .map(|v| *v)
    }

    async fn never_init(cell: &OnceCell<usize>) {
        let v = cell.get_or_init(async { unreachable!() }).await;
        assert_eq!(v, &2);
    }

    #[test]
    fn slow_path() {
        let w = Arc::new(CountWaker::default()).into();
        let mut cx = std::task::Context::from_waker(&w);

        let cmd = AtomicUsize::new(0);
        let cell = OnceCell::new();

        let mut f1 = pin!(maybe(&cmd, &cell));
        let mut f2 = pin!(never_init(&cell));

        println!("{:?}", cell);
        assert!(f1.as_mut().poll(&mut cx).is_pending());
        println!("{:?}", cell);
        assert!(f2.as_mut().poll(&mut cx).is_pending());
        println!("{:?}", cell);
        cmd.store(2, Ordering::Relaxed);
        assert!(f2.as_mut().poll(&mut cx).is_pending());
        assert!(f1.as_mut().poll(&mut cx).is_ready());
        println!("{:?}", cell);
        assert!(f2.as_mut().poll(&mut cx).is_ready());
    }

    #[test]
    fn fast_path_tricked() {
        // f1 will complete on the fast path, but a queue was created anyway
        let w = Arc::new(CountWaker::default()).into();
        let mut cx = std::task::Context::from_waker(&w);

        let cmd = AtomicUsize::new(0);
        let cell = OnceCell::new();

        let mut f1 = pin!(maybe(&cmd, &cell));
        let mut f2 = pin!(never_init(&cell));

        println!("{:?}", cell);
        assert!(f1.as_mut().poll(&mut cx).is_pending());
        println!("{:?}", cell);
        assert!(f2.as_mut().poll(&mut cx).is_pending());
        println!("{:?}", cell);
        cmd.store(2, Ordering::Relaxed);
        f2.set(never_init(&cell));
        println!("{:?}", cell);
        assert!(f1.as_mut().poll(&mut cx).is_ready());
        println!("{:?}", cell);
        assert!(f2.as_mut().poll(&mut cx).is_ready());
    }

    #[test]
    fn second_try() {
        let waker = Arc::new(CountWaker::default());
        let w = waker.clone().into();
        let mut cx = std::task::Context::from_waker(&w);

        let cmd = AtomicUsize::new(0);
        let cell = OnceCell::new();

        let mut f1 = pin!(maybe(&cmd, &cell));
        let mut f2 = pin!(maybe(&cmd, &cell));
        let mut f3 = pin!(maybe(&cmd, &cell));
        let mut f4 = pin!(maybe(&cmd, &cell));

        assert!(f1.as_mut().poll(&mut cx).is_pending());
        assert_eq!(cell.inner.state.load(Ordering::Relaxed), QINIT_BIT);
        assert!(f2.as_mut().poll(&mut cx).is_pending());
        assert!(f3.as_mut().poll(&mut cx).is_pending());
        assert!(f4.as_mut().poll(&mut cx).is_pending());
        assert_eq!(cell.inner.state.load(Ordering::Relaxed), QINIT_BIT | 3);

        cmd.store(1, Ordering::Relaxed);
        // f2 should do nothing, as f1 holds QuickInitGuard
        assert!(f2.as_mut().poll(&mut cx).is_pending());
        assert_eq!(waker.0.load(Ordering::Relaxed), 0);

        // f1 fails, as commanded
        assert_eq!(f1.as_mut().poll(&mut cx), task::Poll::Ready(Err(1)));
        // it released QINIT_BIT (and doesn't still hold a reference)
        assert_eq!(cell.inner.state.load(Ordering::Relaxed), 3);
        // f1 caused a wake to be sent (only one, as they have the same waker)
        assert_eq!(waker.0.load(Ordering::Relaxed), 1);

        // drop one waiting task and check that the refcount drops
        f4.set(maybe(&cmd, &cell));
        assert_eq!(cell.inner.state.load(Ordering::Relaxed), 2);

        // have f2 start init
        cmd.store(0, Ordering::Relaxed);
        assert!(f2.as_mut().poll(&mut cx).is_pending());

        // allow f2 to actually complete init
        cmd.store(2, Ordering::Relaxed);

        // f3 should add itself to the queue again, but not complete
        assert!(f3.as_mut().poll(&mut cx).is_pending());
        assert_eq!(waker.0.load(Ordering::Relaxed), 1);

        assert_eq!(f2.as_mut().poll(&mut cx), task::Poll::Ready(Ok(2)));

        // Nobody else should run their closure
        cmd.store(3, Ordering::Relaxed);

        // Other tasks can now immediately access the value
        assert_eq!(f4.as_mut().poll(&mut cx), task::Poll::Ready(Ok(2)));

        // f3 is still waiting; the queue should not be freed yet, and it should have seen a wake
        assert_eq!(waker.0.load(Ordering::Relaxed), 2);
        assert_eq!(cell.inner.state.load(Ordering::Relaxed), READY_BIT | 1);
        assert!(!cell.inner.queue.load(Ordering::Relaxed).is_null());

        assert_eq!(f3.as_mut().poll(&mut cx), task::Poll::Ready(Ok(2)));
        // the cell should be fully ready, with the queue deallocated

        assert_eq!(cell.inner.state.load(Ordering::Relaxed), READY_BIT);
        assert!(cell.inner.queue.load(Ordering::Relaxed).is_null());

        // no more wakes were sent
        assert_eq!(waker.0.load(Ordering::Relaxed), 2);
    }

    #[test]
    fn lazy_panic() {
        let w = Arc::new(CountWaker::default()).into();

        let cmd = AtomicUsize::new(6);
        let lz = Lazy::new(CmdWait(&cmd));

        assert_eq!(std::mem::size_of_val(&lz), 3 * std::mem::size_of::<usize>(), "Extra overhead?");

        // A panic during F::drop must properly transition the Lazy to ready in order to avoid a
        // double-drop of F or a drop of an invalid T
        assert!(std::panic::catch_unwind(|| {
            let mut cx = std::task::Context::from_waker(&w);
            pin!(lz.get_unpin()).poll(&mut cx)
        })
        .is_err());

        assert_eq!(lz.try_get(), Some(&6));
    }
}

union LazyState<T, F> {
    running: ManuallyDrop<F>,
    ready: ManuallyDrop<T>,
    _empty: (),
}

/// A value which is computed on demand by running a future.
///
/// Unlike [OnceCell], if a task is cancelled, the initializing future's execution will be
/// continued by other (concurrent or future) callers of [Lazy::get].
///
/// ```
/// use std::sync::Arc;
/// use async_once_cell::Lazy;
///
/// # async fn run() {
/// struct Data {
///     id: u32,
/// }
///
/// let shared = Arc::pin(Lazy::new(async move {
///     Data { id: 4 }
/// }));
///
/// assert_eq!(shared.as_ref().await.id, 4);
/// # }
/// # use std::future::Future;
/// # struct NeverWake;
/// # impl std::task::Wake for NeverWake {
/// #     fn wake(self: Arc<Self>) {}
/// # }
/// # let w = Arc::new(NeverWake).into();
/// # let mut cx = std::task::Context::from_waker(&w);
/// # assert!(std::pin::pin!(run()).poll(&mut cx).is_ready());
/// ```
///
/// Using this type with an `async` block in a `static` item requries unstable rust:
///
/// ```no_run
/// #![feature(const_async_blocks)]
/// #![feature(type_alias_impl_trait)]
/// use async_once_cell::Lazy;
/// use std::future::Future;
///
/// type H = impl Future<Output=i32>;
/// static LAZY: Lazy<i32, H> = Lazy::new(async { 4 });
/// ```
///
/// However, it is possile to use if you have a named struct that implements `Future`:
///
/// ```
/// use async_once_cell::Lazy;
/// use std::{future::Future, pin::Pin, task};
///
/// struct F;
/// impl Future for F {
///     type Output = i32;
///     fn poll(self: Pin<&mut Self>, _: &mut task::Context) -> task::Poll<i32> {
///         return task::Poll::Ready(4);
///     }
/// }
///
/// static LAZY: Lazy<i32, F> = Lazy::new(F);
/// ```
///
/// And this type of struct can still use `async` syntax in its implementation:
///
/// ```
/// use async_once_cell::Lazy;
/// use std::{future::Future, pin::Pin, task};
///
/// struct F(Option<Pin<Box<dyn Future<Output=i32> + Sync + Send>>>);
/// impl Future for F {
///     type Output = i32;
///     fn poll(mut self: Pin<&mut Self>, cx: &mut task::Context) -> task::Poll<i32> {
///         Pin::new(self.0.get_or_insert_with(|| Box::pin(async {
///             4
///         }))).poll(cx)
///     }
/// }
///
/// static LAZY: Lazy<i32, F> = Lazy::new(F(None));
/// ```

pub struct Lazy<T, F> {
    value: UnsafeCell<LazyState<T, F>>,
    inner: Inner,
}

// Safety: our UnsafeCell should be treated like (RwLock<T>, Mutex<F>)
unsafe impl<T: Send + Sync, F: Send> Sync for Lazy<T, F> {}
unsafe impl<T: Send, F: Send> Send for Lazy<T, F> {}
impl<T: Unpin, F: Unpin> Unpin for Lazy<T, F> {}
impl<T: RefUnwindSafe + UnwindSafe, F: UnwindSafe> RefUnwindSafe for Lazy<T, F> {}
impl<T: UnwindSafe, F: UnwindSafe> UnwindSafe for Lazy<T, F> {}

impl<T, F> Lazy<T, F>
where
    F: Future<Output = T>,
{
    /// Creates a new lazy value with the given initializing future.
    pub const fn new(future: F) -> Self {
        Self::from_future(future)
    }

    /// Forces the evaluation of this lazy value and returns a reference to the result.
    ///
    /// This is equivalent to calling `.await` on a pinned reference, but is more explicit.
    ///
    /// The [Pin::static_ref] function may be useful if this is a static value.
    pub async fn get(self: Pin<&Self>) -> Pin<&T> {
        self.await
    }
}

enum Step<'a> {
    Start,
    Quick { guard: QuickInitGuard<'a> },
    Wait { guard: QueueWaiter<'a> },
    Run { head: QueueHead<'a> },
}

/// A helper struct for both of [Lazy]'s [IntoFuture]s
///
/// Note: the Lazy value may or may not be pinned, depending on what public struct wraps this one.
struct LazyFuture<'a, T, F> {
    lazy: &'a Lazy<T, F>,
    step: Step<'a>,
    // This is needed to guarantee Inner's refcount never overflows
    _pin: PhantomPinned,
}

impl<'a, T, F> LazyFuture<'a, T, F>
where
    F: Future<Output = T>,
{
    fn poll(&mut self, cx: &mut task::Context<'_>) -> task::Poll<&'a T> {
        struct QuickReadyGuard<'a, T, F> {
            this: &'a Lazy<T, F>,
            value: ManuallyDrop<T>,
            guard: QuickInitGuard<'a>,
        }

        // Prevent double-drop in case of panic in ManuallyDrop::drop
        impl<T, F> Drop for QuickReadyGuard<'_, T, F> {
            fn drop(&mut self) {
                // Safety: the union is currently empty and must be filled with a ready value
                unsafe {
                    let value = ManuallyDrop::take(&mut self.value);
                    (*self.this.value.get()).ready = ManuallyDrop::new(value);
                }
                self.guard.ready = true;
            }
        }

        struct ReadyGuard<'a, T, F> {
            this: &'a Lazy<T, F>,
            value: ManuallyDrop<T>,
            // head is a field here to ensure it is dropped after our Drop
            head: QueueHead<'a>,
        }

        // Prevent double-drop in case of panic in ManuallyDrop::drop
        impl<T, F> Drop for ReadyGuard<'_, T, F> {
            fn drop(&mut self) {
                // Safety: the union is currently empty and must be filled with a ready value
                unsafe {
                    let value = ManuallyDrop::take(&mut self.value);
                    (*self.this.value.get()).ready = ManuallyDrop::new(value);
                }
                self.head.guard.inner.set_ready();
            }
        }

        loop {
            match mem::replace(&mut self.step, Step::Start) {
                Step::Start => {
                    let state = self.lazy.inner.state.load(Ordering::Acquire);

                    if state & READY_BIT == 0 {
                        self.step = match self.lazy.inner.initialize(state == NEW) {
                            Err(guard) => Step::Quick { guard },
                            Ok(guard) => Step::Wait { guard },
                        };
                        continue;
                    }

                    // Safety: we just saw READY_BIT set
                    return task::Poll::Ready(unsafe { &(*self.lazy.value.get()).ready });
                }
                Step::Quick { guard } => {
                    // Safety: the union is in the running state and is pinned like self
                    let init =
                        unsafe { Pin::new_unchecked(&mut *(*self.lazy.value.get()).running) };
                    let value = match init.poll(cx) {
                        task::Poll::Pending => {
                            self.step = Step::Quick { guard };
                            return task::Poll::Pending;
                        }
                        task::Poll::Ready(value) => ManuallyDrop::new(value),
                    };
                    // Safety: the guard acts like QueueHead even if there is contention.
                    // This transitions the union to ready and updates state to reflect that.
                    unsafe {
                        let guard = QuickReadyGuard { this: &self.lazy, value, guard };
                        ManuallyDrop::drop(&mut (*self.lazy.value.get()).running);
                        drop(guard);
                    }

                    // Safety: just initialized
                    return task::Poll::Ready(unsafe { &(*self.lazy.value.get()).ready });
                }
                Step::Wait { mut guard } => match Pin::new(&mut guard).poll(cx) {
                    task::Poll::Pending => {
                        self.step = Step::Wait { guard };
                        return task::Poll::Pending;
                    }
                    task::Poll::Ready(None) => {
                        // Safety: getting None from QueueWaiter means it is ready
                        return task::Poll::Ready(unsafe { &(*self.lazy.value.get()).ready });
                    }
                    task::Poll::Ready(Some(head)) => {
                        self.step = Step::Run { head };
                        continue;
                    }
                },
                Step::Run { head } => {
                    // Safety: the union is in the running state and is pinned like self
                    let init =
                        unsafe { Pin::new_unchecked(&mut *(*self.lazy.value.get()).running) };
                    // We hold the QueueHead, so we know that nobody else has successfully run an init
                    // poll and that nobody else can start until it is dropped.  On error, panic, or
                    // drop of this Future, the head will be passed to another waiter.
                    let value = match init.poll(cx) {
                        task::Poll::Pending => {
                            self.step = Step::Run { head };
                            return task::Poll::Pending;
                        }
                        task::Poll::Ready(value) => ManuallyDrop::new(value),
                    };

                    // Safety: We still hold the head, so nobody else can write to value
                    // This transitions the union to ready and updates state to reflect that.
                    unsafe {
                        let head = ReadyGuard { this: &self.lazy, value, head };
                        ManuallyDrop::drop(&mut (*self.lazy.value.get()).running);

                        // mark the cell ready before giving up the head
                        drop(head);
                    }
                    // drop of QueueHead notifies other Futures
                    // drop of QueueRef (might) free the Queue

                    // Safety: just initialized
                    return task::Poll::Ready(unsafe { &(*self.lazy.value.get()).ready });
                }
            }
        }
    }
}

/// A helper struct for [Lazy]'s [IntoFuture]
pub struct LazyFuturePin<'a, T, F>(LazyFuture<'a, T, F>);

impl<'a, T, F> IntoFuture for Pin<&'a Lazy<T, F>>
where
    F: Future<Output = T>,
{
    type Output = Pin<&'a T>;
    type IntoFuture = LazyFuturePin<'a, T, F>;
    fn into_future(self) -> Self::IntoFuture {
        // Safety: this is Pin::deref, but with a lifetime of 'a
        let lazy = unsafe { Pin::into_inner_unchecked(self) };
        LazyFuturePin(LazyFuture { lazy, step: Step::Start, _pin: PhantomPinned })
    }
}

impl<'a, T, F> Future for LazyFuturePin<'a, T, F>
where
    F: Future<Output = T>,
{
    type Output = Pin<&'a T>;
    fn poll(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> task::Poll<Pin<&'a T>> {
        // Safety: we don't move anything that needs to be pinned.
        let inner = unsafe { &mut Pin::into_inner_unchecked(self).0 };
        // Safety: because the original Lazy was pinned, the T it produces is also pinned
        inner.poll(cx).map(|p| unsafe { Pin::new_unchecked(p) })
    }
}

impl<T, F> Lazy<T, F>
where
    F: Future<Output = T> + Unpin,
{
    /// Forces the evaluation of this lazy value and returns a reference to the result.
    ///
    /// This is equivalent to calling `.await` on a reference, but may be clearer to call
    /// explicitly.
    ///
    /// Unlike [Self::get], this does not require pinning the object.
    pub async fn get_unpin(&self) -> &T {
        self.await
    }
}

/// A helper struct for [Lazy]'s [IntoFuture]
pub struct LazyFutureUnpin<'a, T, F>(LazyFuture<'a, T, F>);

impl<'a, T, F> IntoFuture for &'a Lazy<T, F>
where
    F: Future<Output = T> + Unpin,
{
    type Output = &'a T;
    type IntoFuture = LazyFutureUnpin<'a, T, F>;
    fn into_future(self) -> Self::IntoFuture {
        LazyFutureUnpin(LazyFuture { lazy: self, step: Step::Start, _pin: PhantomPinned })
    }
}

impl<'a, T, F> Future for LazyFutureUnpin<'a, T, F>
where
    F: Future<Output = T> + Unpin,
{
    type Output = &'a T;
    fn poll(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> task::Poll<&'a T> {
        // Safety: we don't move anything that needs to be pinned.
        unsafe { Pin::into_inner_unchecked(self) }.0.poll(cx)
    }
}

impl<T, F> Lazy<T, F> {
    /// Creates a new lazy value with the given initializing future.
    ///
    /// This is equivalent to [Self::new] but with no type bound.
    pub const fn from_future(future: F) -> Self {
        Self {
            value: UnsafeCell::new(LazyState { running: ManuallyDrop::new(future) }),
            inner: Inner::new(),
        }
    }

    /// Creates an already-initialized lazy value.
    pub const fn with_value(value: T) -> Self {
        Self {
            value: UnsafeCell::new(LazyState { ready: ManuallyDrop::new(value) }),
            inner: Inner::new_ready(),
        }
    }

    /// Gets the value without blocking or starting the initialization.
    pub fn try_get(&self) -> Option<&T> {
        let state = self.inner.state.load(Ordering::Acquire);

        if state & READY_BIT == 0 {
            None
        } else {
            // Safety: just checked ready
            unsafe { Some(&(*self.value.get()).ready) }
        }
    }

    /// Gets the value without blocking or starting the initialization.
    ///
    /// This requires mutable access to self, so rust's aliasing rules prevent any concurrent
    /// access and allow violating the usual rules for accessing this cell.
    pub fn try_get_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
        // Safety: unpinning for access
        let this = unsafe { self.get_unchecked_mut() };
        let state = *this.inner.state.get_mut();
        if state & READY_BIT == 0 {
            None
        } else {
            // Safety: just checked ready, and pinned as a projection
            unsafe { Some(Pin::new_unchecked(&mut this.value.get_mut().ready)) }
        }
    }

    /// Gets the value without blocking or starting the initialization.
    ///
    /// This requires mutable access to self, so rust's aliasing rules prevent any concurrent
    /// access and allow violating the usual rules for accessing this cell.
    pub fn try_get_mut_unpin(&mut self) -> Option<&mut T> {
        let state = *self.inner.state.get_mut();
        if state & READY_BIT == 0 {
            None
        } else {
            // Safety: just checked ready
            unsafe { Some(&mut self.value.get_mut().ready) }
        }
    }

    /// Takes ownership of the value if it was set.
    ///
    /// Similar to the try_get functions, this returns None if the future has not yet completed,
    /// even if the value would be available without blocking.
    pub fn into_inner(self) -> Option<T> {
        self.into_parts().ok()
    }

    /// Takes ownership of the value or the initializing future.
    pub fn into_parts(mut self) -> Result<T, F> {
        let state = *self.inner.state.get_mut();

        // Safety: we can take ownership of the contents of self.value as long as we avoid dropping
        // it when self goes out of scope.  The value EMPTY_STATE (!0) is used as a sentinel to
        // indicate that the union is empty - it's impossible for state to be set to that value
        // normally by the same logic that prevents refcount overflow.
        //
        // Note: it is not safe to do this in a &mut self method because none of the get()
        // functions handle EMPTY_STATE; that's not relevant here as we took ownership of self.
        // A working "Lazy::take(&mut self)" function would also need to create a new initializing
        // future, and at that point it's best done by just using mem::replace with a new Lazy.
        unsafe {
            *self.inner.state.get_mut() = EMPTY_STATE;
            if state & READY_BIT == 0 {
                Err(ptr::read(&*self.value.get_mut().running))
            } else {
                Ok(ptr::read(&*self.value.get_mut().ready))
            }
        }
    }

    /// Takes ownership of the value from a pinned object.
    ///
    /// This is equivalent to `mem::replace(self, replacement).into_inner()` but does not require
    /// that `F` be `Unpin` like that expression would.
    pub fn replace_and_take(self: Pin<&mut Self>, replacement: Self) -> Option<T>
    where
        T: Unpin,
    {
        // Safety: this reads fields and then open-codes Pin::set
        let this = unsafe { self.get_unchecked_mut() };
        let state = *this.inner.state.get_mut();
        let value = if state & READY_BIT == 0 {
            None
        } else {
            *this.inner.state.get_mut() = EMPTY_STATE;
            Some(unsafe { ptr::read(&*this.value.get_mut().ready) })
        };
        *this = replacement;
        value
    }
}

impl<T, F> Drop for Lazy<T, F> {
    fn drop(&mut self) {
        let state = *self.inner.state.get_mut();
        // Safety: the state always reflects the variant of the union that we must drop
        unsafe {
            if state == EMPTY_STATE {
                // do nothing (see into_inner and the _empty variant)
            } else if state & READY_BIT == 0 {
                ManuallyDrop::drop(&mut self.value.get_mut().running);
            } else {
                ManuallyDrop::drop(&mut self.value.get_mut().ready);
            }
        }
    }
}

impl<T: fmt::Debug, F> fmt::Debug for Lazy<T, F> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        let value = self.try_get();
        fmt.debug_struct("Lazy").field("value", &value).field("inner", &self.inner).finish()
    }
}