1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
// Copyright Ian Jackson and contributors to Rust async-condvar-fair
// SPDX-License-Identifier: GPL-3.0-or-later
// There is NO WARRANTY.

#![forbid(unsafe_code)]
#![allow(clippy::needless_lifetimes)] // these sometimes make things clearer
#![allow(clippy::option_map_unit_fn)] // suggestion is in poor taste

//! [`wait`]: Condvar::wait
//! [`wait_baton`]: Condvar::wait_baton
//! [`wait_no_relock`]: Condvar::wait_no_relock
//! [`notify_one`]: Condvar::notify_one
//! [`RelockMutexGuard`]: trait@RelockMutexGuard
//! [`Arc`]: std::sync::Arc
#![doc = include_str!("../README.md")]

use std::fmt::Debug;
use std::future::Future;
use std::pin::Pin;
use std::task::{Context, Waker, Poll, Poll::*};

use pin_project_lite::pin_project;

#[cfg(test)]
mod test;

// ---------- public structs ----------

/// **Condition variable (for async)**
///
/// For background information about of the semantics of a condition
/// variable, see [Wikipedia](https://en.wikipedia.org/wiki/Condition_variable#Condition_variables_2) and/or [`std::sync::Condvar`].
///
/// Unlike `std`'s condition variables, `async-condvar-fair`'s do not
/// block the current thread, only the current async task.  Also,
/// multiple condition variables may be freely used with multiple
/// different mutexes.
///
/// Like all condition variables, `async-condvar-wait`'s may generate
/// spurious wakeups.  After completing a wait, you must re-check the
/// actual condition in your data structure, not simply assume that it
/// must be ready for you.
#[derive(Debug,Default)]
pub struct Condvar(parking_lot::Mutex<CV>);

pin_project!{
/// Future for waiting, from [`wait_baton`]
///
/// See [`wait_baton`] for information about the results of awaiting this.
///
/// This type definition could be useful if a named type is wanted.
///
/// [`wait_baton`]: Condvar::wait_baton
pub struct Waiter<'c,G> where G: RelockMutexGuard {
  #[pin] waitstate: WaitState<'c,G>,
}}

/// Obligation to do work, or notify someone else to do it
///
/// # Task cancellation in async Rust
///
/// In async Rust, futures can be cancelled at any `await` point, and
/// simply discarded, if whatever was waiting for them loses interest.
/// From the point of view of a reader of the `async` block, this is
/// as if the code simply stopped running at some `await` point, for
/// reasons outside of its own control, and discarded all of its state.
///
/// When `notify_one` is being used, there is therefore a risk that
/// the waiting task that `notify_one` chooses to wake up gets
/// cancelled before it is able to do the work that the notifier
/// intended.
///
/// (This risk only arises if the process of responding to the
/// notification might `await`.  In that case you will also want to be
/// using an async mutex, since it is generally forbidden to
/// `await` with a sync mutex held.)
///
/// `Baton` helps with this risk.  `Option<Baton>` is returned by
/// `wait_baton`, and should be kept until the work is completed, and
/// then [`dispose`]d.
///
/// If the `Baton` is simply dropped (for example, due to task
/// cancellation), the condvar will be re-notified.
///
/// # How to handle a `Baton`
///
/// Use [`wait_baton`] rather than plain [`wait`].  When `wait_baton`
/// completes, keep the baton while you do whatever work there is to
/// be done.
///
/// After having done the necessary work, as the caller of
/// `notify_one` was expecting, call `Baton::dispose`.
///
/// # Infinite loop, or even livelock, risk
///
/// It is important to `dispose` of the baton even if your processing
/// suffers a (possibly persistent) error.  If you accidentally drop the
/// baton (eg on an error path), another task will be woken up and
/// perhaps perform the same failing actions, leading to the program
/// looping uselessly, eating cpu.
///
/// Depending on your runtime's scheduler, that might even be a
/// livelock.
///
/// [`dispose`]: Baton::dispose
/// [`wait_baton`]: Condvar::wait_baton
/// [`wait`]: Condvar::wait
#[derive(Debug)]
pub struct Baton<'c> {
  condvar: Option<&'c Condvar>, // always Some other than in discard()
}
// In the implementation there are not just real `Baton` but
// also other notional battons:
//
//   * An `Entry` which is `Signaled`.
//   * A `Waiter` which is `Locking` and has `baton=true`.
//
// We arrange `Drop` impls, and the code handling these situations, to
// always pass on the baton.

impl Condvar {
  pub fn new() -> Self { Default::default() }
}

// ---------- RelockMutexRef trait ----------

/// Lock guards that can be unlocked and relocked
///
/// # Purpose
///
/// [`Condvar::wait_baton`] and [`wait`] need to unlock and then
/// relock the mutex.  So, they need to be able to recover `&Mutex`
/// from the guard.
///
/// # Regaining the mutex ref
///
/// If the lock in use doesn't support this (e.g., at the time of
/// writing, `std::sync::Mutex`, it is usually possible to implement
/// this trait on a tuple struct of guard and lock reference (and,
/// therefore, pass that tuple struct to `Condvar::wait`.
///
/// # Provided implementations and support
///
/// Implementations are provided for a handful of common `MutexGuard`
/// types.  Contributions of more (with the appropriate optional
/// dependencies in `Cargo.toml` are welcome.
///
/// The [`RelockMutexGuard!`] macro can save much boilerplate in the
/// common cases.
///
/// # Semantics
///
/// `async-condvar-fair` assumes that `RelockMutexGuard` impl's are
/// sensible.  If they aren't, malfunctions including deadlocks or
/// livelocks or panics are possible.  But memory safety won't be
/// compromised.
///
/// [`wait`]: Condvar::wait
pub trait RelockMutexGuard {
  /// The reference to the mutex, recovered after unlocking.
  type MutexRef: Clone + Send;

  /// The actual guard type.
  /// 
  /// Where `Self` (the argument to `wait_baton` or `wait` contains
  /// both a guard and a separate mutex reference, it is typically most
  /// convenient for the `wait` futures to produce just the mutex guard.
  ///
  /// That is what this type is.
  type JustGuard;

  /// The type of the relock future.
  type LockFuture: Future<Output=Self::JustGuard> + Send;

  /// Unlock the mutex and return a reference tt.
  fn unlock_for_relock(self) -> Self::MutexRef;

  /// Relock the mutex, given a reference.
  ///
  /// Poisoning (as found in `std::sync::Mutedx`) will have to
  /// propagate poisoning as panics, or or ignore it, since
  /// `notify_one` insists that someone must go and acquire the mutex
  /// which they can't if that always fails due to poisoning.
  fn lock(r: Self::MutexRef) -> Self::LockFuture;
}

/// Implements [`trait@RelockMutexGuard`] (needed for any mutexes used
/// with a condvar)
///
/// # Summary
///
/// Helper macro to `impl` [`RelockMutexGuard`], for various mutex
/// types.  `RelockMutexGuard!` has five forms, for five use cases:
///
///  * Third-party impl, convenient mutex: mutex ref recoverable from guard
///  * Third-party impl, inconveneint mutex ref passed separately
///  * First or second party impl, convenient mutex
///  * Within `async_condvar_fair`, inconvenient mutex
///  * Explicitly specify type and lifetime parameters.
///
/// An alternative to implementing [`RelockMutexGuard`] (via this
/// macro or otherwisse) is to use [`wait_no_relock`] everywhere.
///
/// # Trait coherence, first/second party vs third party
///
/// The firt or second party forms can only be used in the crate
/// defining the mutex guard type (or within `async_condvar_fair`),
/// because of Rust's trait coherence rules.
/// 
/// The third party forms define a helper struct, for pasing to
/// `wait_baton` or `wait`.
///
/// # Convenient vs inconvenient mutexes
///
/// Ideally, mutex guards implement a method for recovering a
/// reference to the original mutex.  This saves users who need to
/// unlock and relock a mutex (like anyone uusing a condition
/// variable) from having to carry a separate copy of a reference to
/// the mutex.
///
/// For convenient mutexes, you can just pass the guard to
/// [`wait_baton`] or [`wait`].  For inconvenient mutexes, you must
/// also pass a reference to the uneerlying mutex - typically, as
/// element `.1` of a tuple or tuple struct.
///
/// # Examples
///
/// ## Third party impl, convenient mutex
///
/// ```
/// # use async_condvar_fair::{Condvar, RelockMutexGuard};
/// # use parking_lot as nice;
/// RelockMutexGuard!{
///     NiceGuardForCondvar(nice::MutexGuard) [nice::Mutex],
///     l => async move { l.lock() },
///     g => nice::MutexGuard::mutex(&g),
/// }
/// # let condvar = Condvar::new();
/// # let mutex = nice::Mutex::new(());
/// # let guard = mutex.lock();
/// condvar.wait_baton(NiceGuardForCondvar(guard));
/// ```
/// Macro expansion:
/// ```ignore
/// struct NiceGuardForCondvar<'l,T>(nice::MutexGuard<'l,T>);
/// impl<'l,T> RelockMutexGuard for NiceGuardForCondvar<'l,T> {/*...*/}
/// async fn wait(&self, NiceGuardForCondvar<'l,T>) -> nice::MutexGuard<'l,T>; //roughly
/// ```
///
/// The expression after `l =>` must be a a future, such as an async
/// block or an un-`await`ed call to an async function.  `l` will have
/// type `&'l MutexMT>`.  When awaited, the lock expression must yield
/// `Guard<'l, T>`.
///
/// The expression after `g =>` must recover the mutex reference.  `g`
/// will have type `Guard<'l, T>`, and the expression must have type
/// `&'l Mutex<T>`.
///
/// The mutex recovery expression is given ownership of the guard, but
/// it should discard it.  (The expression forms the core of the
/// generated implementation of `unlock_for_relock`.)
///
/// The optional `$xbound`s are additional bounds on `T` (each with
/// their own `where`, contrary to normal Rust syntax).  (This is
/// needed, for example, for `RwLockReadGuard`, which needs `T:
/// Send`.)
///
/// ## Third party impl, inconvenient mutex
///
/// ```
/// # use async_condvar_fair::{Condvar, RelockMutexGuard};
/// # use parking_lot as awkward;
/// RelockMutexGuard!{
///     AwkwardGuardForCondvar(awkward::MutexGuard, awkward::Mutex),
///     l => async move { l.lock() },
/// }
/// # let condvar = Condvar::new();
/// # let mutex = awkward::Mutex::new(());
/// # let guard = mutex.lock();
/// condvar.wait_baton(AwkwardGuardForCondvar(guard, &mutex));
/// ```
/// Macro expansion:
/// ```ignore
/// struct AwkwardGuardForCondvar<'o,'i,T>(
///     awkward::MutexGuard<'i,T>,
///     &'o awkward::Mutex<T>,
/// );
/// impl<'o,'i,T> RelockMutexGuard for AwkwardGuardForCondvar<'o,'i,T> {/*...*/}
/// async fn wait(&self, AwkwardGuardForCondvar<'o,'i,T>) -> awkward::MutexGuard<'o,T>; //roughly
/// ```
///
/// ## First and second-party impl's
///
/// If you are invoking `RelockMutexGuard!` in the same crate as
/// defines a convenient mutex, or within `async_condvar_fair`, omit
/// the struct name.
///
/// This will implement the trait directly for the guard type, or the
/// pair consisting of the guard and the mutex reference:
///
/// ### First or second party impl, convenient mutex
/// ```
/// # use async_condvar_fair::RelockMutexGuard;
/// # struct Mutex<T>(parking_lot::Mutex<T>);
/// # impl<T> Mutex<T> { fn lock(&self) -> MutexGuard<T> { todo!() } }
/// # struct MutexGuard<'l,T>(parking_lot::MutexGuard<'l,T>);
/// impl<'l,T> MutexGuard<'l,T> {
///     fn mutex(self_: &Self) -> &'l Mutex<T> { todo!() }
/// }
/// RelockMutexGuard!{
///     (MutexGuard) [Mutex],
///     l => async move { l.lock() },
///     g => MutexGuard::mutex(&g),
/// }
/// ```
/// Generates:
/// ```ignore
/// impl<'l,T> RelockMutexGuard for MutexGuard<'l,T> {/*...*/}
/// async fn wait(&self, MutexGuard<'l,T>) -> MutexGuard<'l,T>; //roughly
/// ```
/// ### Within `async_condvar_fair`, inconvenient mutex
/// ```ignore
/// RelockMutexGuard!{
///     (MutexGuard, Mutex),
///     l => async move { l.lock() },
/// }
/// ```
/// Generates:
/// ```ignore
/// impl<'o,'i,T> RelockMutexGuard for (MutexGuard<'i,T>, &'o Mutex<T>) {/*...*/}
/// async fn wait(&self, (MutexGuard<'i,T>, &'o Mutex<T>)) -> MutexGuard<'o,T>; //roughly
/// ```
///
/// ### Explicit type and lifetime parameters
///
/// The other four forms all assume that the unlocked mutex is `&...`
/// and that the mutex is a wrapper type directly around `T`.  For other
/// situations, for example `Arc`-based owned guards, the explicit form
/// is needed.
///
/// The other four forms are convenience wrappers that all expand to
/// the explicit form.
///
/// ```ignore
/// RelockMutexGuard!{
///      <T>
///      (smol::lock::MutexGuardArc<T>)
///      [std::sync::Arc<smol::lock::Mutex<T>>, smol::lock::MutexGuardArc<T>],
///      l => async move { l.lock_arc().await },
///      g => smol::lock::MutexGuardArc::source(&g).clone(),
///      where T: 'static
/// }
/// ```
/// `$guard_in` is the argument to [`wait`].  `$guard_out` is the output
/// of the future.  `$mutexref` is the intermediate, unlocked, form.
/// 
/// The first lifetime in the generic arguments (if there are any
/// lifetimes) becomes a bound on `LockFuture`.
/// 
/// `$t: $bounds` is expanded as `$t : std::marker::Send + $bounds`.
///
/// [`wait`]: Condvar::wait
/// [`wait_baton`]: Condvar::wait_baton
/// [`wait_no_relock`]: Condvar::wait_no_relock
/// [`notify_one`]: Condvar::notify_one
/// [`RelockMutexGuard`]: trait@RelockMutexGuard
#[macro_export]
macro_rules! RelockMutexGuard {
  { $struct:ident ($($guard:tt)+) $(,)? [$($mutex:tt)+] $(,)?
    $l:pat => $lock:expr,
    $g:pat => $get_mutex:expr
    $( , where $xbound:path )* $(,)?
  } => {
    pub struct $struct<'l,T>(pub $($guard)+<'l,T>);
    $crate::RelockMutexGuard! {
      <'l,T>
        ( $struct<'l,T> )
        [ &'l $($mutex)+ <T>, $($guard)+ <'l,T> ],
      $l => $lock,
      $struct($g) => $get_mutex,
      where T: $( $xbound + )*
    }
  };

  { $struct:ident ($guard:ident $(:: $guardx:ident)*, $($mutex:tt)+) $(,)?
    $l:pat => $lock:expr
    $( , where $xbound:path )* $(,)?
  } => {
    pub struct $struct<'i,'o,T>(pub $guard $(:: $guardx)*<'i,T>,
                                pub &'o $($mutex)+<T>);
    
    $crate::RelockMutexGuard! {
      <'o,'i,T>
        ( $struct<'i,'o,T> )
        [ &'o $($mutex)+ <T>, $guard $(:: $guardx)* <'o,T> ],
      $l => $lock,
      g => g.1,
      where T: $( $xbound + )*
    }

  };

  { ($($guard:tt)+) $(,)? [$($mutex:tt)+] $(,)?
    $l:ident => $lock:expr,
    $g:ident => $get_mutex:expr
    $( , where $xbound:path )* $(,)?
  } => {
    $crate::RelockMutexGuard! {
      <'l,T>
        ( $($guard)* <'l,T> )
        [ &'l $($mutex) +<T>, $($guard)* <'l,T> ],
      $l => $lock,
      $g => $get_mutex,
      where T: $( $xbound + )*
    }
  };

  { ($guard:ident $(:: $guardx:ident)*, $($mutex:tt)+) $(,)?
    $l:ident => $lock:expr
    $( , where $xbound:path )* $(,)?
  } => {
    $crate::RelockMutexGuard! {
      <'o,'i,T>
        ( ($guard $(:: $guardx)* <'i,T>, &'o $($mutex)+ <T>) )
        [ &'o $($mutex)+ <T>, $guard $(:: $guardx)* <'o,T> ],
      $l => $lock,
      g => g.1,
      where T: $( $xbound + )*
    }
  };

  { < $($gen_lf0:lifetime, $($gen_lf1:lifetime,)*)? $($gen_ty:ident),* > $(,)?
      ( $guard_in:ty )                             $(,)?
      [ $mutexref:ty, $guard_out:path ]            $(,)?
    $l:pat => $lock:expr                             ,
    $g:pat => $get_mutex:expr                        ,
    where $t:ident : $($bound:tt)*
  } => {
    impl < $($gen_lf0, $($gen_lf1,)*)? $($gen_ty),* >
    $crate::RelockMutexGuard for $guard_in
    where $t : std::marker::Send + $($bound)*
    {
      type MutexRef = $mutexref;
      type JustGuard = $guard_out;
      type LockFuture = std::pin::Pin<std::boxed::Box<
        dyn std::future::Future<Output=Self::JustGuard>
            + std::marker::Send $(+ $gen_lf0)?
      >>;
      fn unlock_for_relock(self) -> Self::MutexRef {
        let $g = self;
        $get_mutex
      }
      fn lock($l: Self::MutexRef) -> Self::LockFuture {
        std::boxed::Box::pin($lock)
      }
    }
  }
}

RelockMutexGuard!{
  (std::sync::MutexGuard, std::sync::Mutex),
  l => async move { l.lock().unwrap() },
}

impl<G> RelockMutexGuard for NotRelockable<G> {
  type MutexRef = ();
  type JustGuard = ();
  type LockFuture = std::future::Ready<()>;
  fn unlock_for_relock(self) -> Self::MutexRef { }
  fn lock(_l: ()) -> Self::LockFuture { std::future::ready(()) }
}

macro_rules! impl_parking_lot { {
  $feat:literal, $parking_lot:ident,
  $( $FairMutex:ident, )?
} => {
  #[cfg(feature=$feat)]
  RelockMutexGuard!{
    ($parking_lot::MutexGuard) [$parking_lot::Mutex],
    l => async move { l.lock() },
    g => $parking_lot::lock_api::MutexGuard::mutex(&g),
  }
  $(
  #[cfg(feature=$feat)]
  RelockMutexGuard!{
    ($parking_lot::FairMutexGuard) [$parking_lot::$FairMutex],
    l => async move { l.lock() },
    g => $parking_lot::lock_api::MutexGuard::mutex(&g),
  }
  )?
} }
impl_parking_lot!{ "parking_lot_0_12", parking_lot     , FairMutex, }
impl_parking_lot!{ "parking_lot_0_11", parking_lot_0_11, FairMutex, }
impl_parking_lot!{ "parking_lot_0_10", parking_lot_0_10, FairMutex, }
impl_parking_lot!{ "parking_lot_0_9",  parking_lot_0_9, }

#[cfg(feature="tokio")]
RelockMutexGuard!{
  (tokio::sync::MutexGuard, tokio::sync::Mutex),
  l => l.lock(),
}
#[cfg(feature="tokio")]
RelockMutexGuard!{
  (tokio::sync::RwLockReadGuard, tokio::sync::RwLock)
  l => l.read(),
  where Sync
}
#[cfg(feature="tokio")]
RelockMutexGuard!{
  (tokio::sync::RwLockWriteGuard, tokio::sync::RwLock),
  l => l.write(),
  where Sync
}
#[cfg(feature="tokio")]
RelockMutexGuard!{
  <T>
    ( (tokio::sync::OwnedMutexGuard<T>,
       std::sync::Arc<tokio::sync::Mutex<T>>) )
    [ std::sync::Arc<tokio::sync::Mutex<T>>,
      tokio::sync::OwnedMutexGuard<T> ],
  l => async move { l.lock_owned().await },
  g => g.1,
  where T: 'static
}
#[cfg(feature="tokio")]
RelockMutexGuard!{
  <T>
    ( (tokio::sync::OwnedRwLockReadGuard<T>,
       std::sync::Arc<tokio::sync::RwLock<T>>) )
    [ std::sync::Arc<tokio::sync::RwLock<T>>,
      tokio::sync::OwnedRwLockReadGuard<T> ],
  l => async move { l.read_owned().await },
  g => g.1,
  where T: Sync + 'static
}
#[cfg(feature="tokio")]
RelockMutexGuard!{
  <T>
    ( (tokio::sync::OwnedRwLockWriteGuard<T>,
       std::sync::Arc<tokio::sync::RwLock<T>>) )
    [ std::sync::Arc<tokio::sync::RwLock<T>>,
      tokio::sync::OwnedRwLockWriteGuard<T> ],
  l => async move { l.write_owned().await },
  g => g.1,
  where T: Sync + 'static
}

#[cfg(feature="smol")]
RelockMutexGuard!{
  (smol::lock::MutexGuard) [smol::lock::Mutex],
  l => l.lock(),
  g => smol::lock::MutexGuard::source(&g),
}
#[cfg(feature="smol")]
RelockMutexGuard!{
  (smol::lock::RwLockReadGuard, smol::lock::RwLock)
  l => l.read(),
  where Sync
}
#[cfg(feature="smol")]
RelockMutexGuard!{
  <T>
    (smol::lock::MutexGuardArc<T>)
    [std::sync::Arc<smol::lock::Mutex<T>>, smol::lock::MutexGuardArc<T>],
  l => async move { l.lock_arc().await },
  g => smol::lock::MutexGuardArc::source(&g).clone(),
  where T: 'static
}

// ---------- internal structs and types ----------

// States a Waiter/WaitState can be in:
//
// WS::Waiting, Entry::Waiting
//
//   A task is waiting on the mutex.  (The future has been created and
//   may be being polled.)
//
//   If the `Waiter` is dropped, the `Entry` is removed from the list.
//   See below (esp., `Entry::Signaled`) about the handling of any
//   notifications this might affect.
//
// WS::Waiting, Entry::Broadcasted
//
//   The task was waiting and has been woken (waker.wake()).  (Or
//   Perhaps the fututre has not been polled yet, in which case there
//   is no Waker, but then when the future is polled, we will see the
//   broadcast.
//
// WS::Waiting, Entry::Signaled
//
//   As for Broadcasted, but, additionally: `notify_one` was called
//   and this WS/Entry represents the baton.  If the `Waiter` is
//   dropped, the condvar must be re-signaled to notify another
//   waiter.
//
// WS::Locking
//
//   The task is trying to reacquire the lock.  We have a suitable
//   future working on that.  `baton` tells us whether, if we drop
//   this `Waiter`, we need to pass on the baton by signalling another
//   task.
//
// WS::Ended
//
//   The Waker is a future.  We have already returned `Poll::Ready`.
//   We don't expect to be called again; if we are, we panic.

#[derive(Debug,Default)]
struct CV {
  list: dlv_list::VecList<Entry>,
}
type I = dlv_list::Index<Entry>;

#[derive(Debug)]
enum Entry {
  Waiting(Option<Waker>),
  Signaled, // implied baton
  Broadcasted,
}
use Entry::*;

// This is a bit clunky because of a number of interlocking constraints:
//  * The public struct must be a struct, not an enum.  Hence the
//    public wrapper `Waiter` vs the internal `WaitState`.
//
//  * We want to impl Drop, somehow.  pin_project struts cannot impl
//    Drop, so we impl Drop on sub-structs that are not structurally
//    pinned.  So we have both pinned and non-pinned sub-fields.
//
//  * The Drop impls must be on parts of the struct which contain
//    `&Condvar`.  This plus the above means `&Condvar` must be
//    entangled with the enum, even though all the variants have it.
//
//  * pin_project_lite supports only struct variants, not tuple variants.

pin_project! {
#[project=WSProj]
enum WaitState<'c,G> where G: RelockMutexGuard {
  Waiting {
    ns: WS_Waiting<'c,G>
  },
  Locking {
    ns: WS_Locking_NS<'c>, // "non-structural", ie not #[pin], but Drop
    #[pin] locking: G::LockFuture,
  },
  Ended,
}}
type WS<'c,G> = WaitState<'c,G>;

#[derive(Debug)]
#[allow(non_camel_case_types)]
struct WS_Waiting<'c,G> where G: RelockMutexGuard {
  condvar: &'c Condvar,
  ent: Option<I>, // always Some, except when dropping or overwriting
  lock: G::MutexRef,
}
#[derive(Debug)]
#[allow(non_camel_case_types)]
struct WS_Locking_NS<'c> {
  condvar: &'c Condvar,
  baton: bool,
}

// ---------- waiting ----------

impl Condvar {
  /// Wait for someone to call [`notify_one`] or [`notify_all`]
  ///
  /// Atomically unlocks the mutex corresponding to `guard` and starts
  /// waiting for notify.
  ///
  /// This is a future producing `(G::JustGuard, Option<` [`Baton`] `<'c>>)`.
  ///
  /// `G` is a fresh guard for the mutex, which has been unlocked and
  /// relocked.
  ///
  /// `baton` is a token representing an possible obligation to either
  /// perform the actions that the caller of `notify_one` is
  /// expecting, or re-notify the condvar.  See [`Baton`].  `baton`
  /// will be `None` if the wakeup was the result of `notify_all`.
  ///
  /// [`notify_one`]: Condvar::notify_one
  /// [`notify_all`]: Condvar::notify_all
  pub fn wait_baton<'c,G>(&'c self, guard: G) -> Waiter<'c,G>
  where G: RelockMutexGuard
  {
    let mut cv = self.0.lock();
    let ent = cv.list.push_back(Waiting(None));
    let lock = RelockMutexGuard::unlock_for_relock(guard);
    Waiter { waitstate: WS::Waiting { ns: WS_Waiting {
      condvar: self,
      ent: Some(ent),
      lock,
    } } }
  }

  /// Wait for a notification; caller must worry about cancellation
  ///
  /// Like `wait_baton` but [`disposes`](Baton::dispose) of the baton
  /// right away on return.
  ///
  /// # Beware task cancellation when using with `notify_one` and an async mutex
  ///
  /// When `wait`, `notify_one`, and an async mutex, are combined,
  /// notifications can easily be lost: perhaps a task calling `wait`
  /// could be cancelled after being woken up by `notify_one`, but
  /// before doing the actual work.  If that happens, probably no
  /// other task will be signaled and the work would go undone.
  ///
  /// So when using `notify_one`, with an async mutex, it is probably
  /// best to use `wait_baton`.
  ///
  /// `async-condvar-fair` does guarantee that `notify_one` will
  /// ensure that at least one `wait` call returns to its caller, (In
  /// particular, if the `wait` task is cancelled after being selected
  /// by `notify_one`, but before it manages to acquire the mutex, the
  /// condvar will be re-notified.)
  /// 
  /// But, in async code it is difficult and error-prone to try to
  /// avoid waiting.  Any `await` might result in task cancellaton,
  /// and then if you're not using `wait_baton`, the notification will
  /// be lost.
  ///
  /// [`wait_baton`] avoids this problem.  `notify_all` doesn't suffer
  /// from it because everyone is woken up anyway.  If you are using a
  /// sync mutex, there is no problem either, because you won't be
  /// `await`ing while processing (ie, while holding the mutex) anyway.
  ///
  /// [`notify_one`]: Condvar::notify_one
  /// [`notify_all`]: Condvar::notify_all
  /// [`wait_baton`]: Condvar::wait_baton
  pub async fn wait<'c,G>(&'c self, guard: G) -> G::JustGuard
  where G: RelockMutexGuard
  {
    let (guard, baton) = self.wait_baton(guard).await;
    baton.dispose();
    guard
  }

  /// Wait for notification; caller will have to relock the mutex
  ///
  /// Like [`wait_baton`] but does not relock the mutex.
  ///
  /// This can be used with any mutex guard type, even one for
  /// which no impl of [`trait@RelockMutexGuard`] is available.
  ///
  /// `wait_no_relock` will first start waiting for notifications, and
  /// then drop `guard` (which, with a mutex guard, will unlock the
  /// mutex).  When `wait_no_relock` completes, you will very probably
  /// want to acquire the mutex again: with `wait_no_relock` this must
  /// be done separately.
  ///
  /// Be sure to `dispose` of the `Option<`[`Baton`]`>` exactly iff
  /// that is appropriate.
  ///
  /// # Deadlock hazard
  ///
  /// There is no type restricton on `guard`.  It is important that
  /// you pass the ownership of the actual mutex guard.
  /// There is no way for the compiler to spot if you don't.
  /// If (for example) you pass `&mut MutexGuard`,
  /// you will fail to unlock the mutex, usually resulting in deadlock.
  ///
  /// [`wait_baton`]: Condvar::wait_baton
  pub async fn wait_no_relock<'c,G>(&'c self, guard: G) -> Option<Baton<'c>> {
    let (_guard, baton) = self.wait_baton(NotRelockable(guard)).await;
    baton
  }
}
struct NotRelockable<G>(G);

impl<'c,G> Future for Waiter<'c,G> where G: RelockMutexGuard {
  type Output = (G::JustGuard, Option<Baton<'c>>);
  fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>)
          -> Poll<Self::Output>
  {
    loop { // to let us rerun the match if we cange the state

      match self.as_mut().project().waitstate.project() {

        WSProj::Ended => panic!(),

        WSProj::Waiting { ns: WS_Waiting { condvar, ent, lock } } => {
          let condvar = *condvar;
          let mut cv = condvar.0.lock();
          let entry = &mut cv.list.get_mut(ent.unwrap()).unwrap();
          let baton = match entry {
            Signaled => true,
            Broadcasted => false,
            Waiting(waker) => {
              *waker = Some(cx.waker().clone());
              return Pending;
            }
          };
          // OK, condvar has been signaled, we need to start to
          // reaquire the lock.  We have converted the baton from
          // Entry::Signaled to a a boolean.
          cv.list.remove(ent.take().unwrap());
          let locking = <G as RelockMutexGuard>::lock(lock.clone());
          self.as_mut().set(Waiter { waitstate: { WS::Locking {
            ns: WS_Locking_NS { condvar, baton },
            locking,
          } } } );
        },

        WSProj::Locking { ns: WS_Locking_NS { condvar, baton }, locking } => {
          let guard = match locking.poll(cx) {
            Pending => return Pending,
            Ready(guard) => guard,
          };
          let rbaton = condvar.baton_from_bool(*baton);
          *baton = false;
          self.as_mut().set(Waiter { waitstate: WS::Ended });
          return Ready((guard, rbaton))
        }
      }

    }
  }
}     

// ---------- notification ----------

impl Condvar {
  /// Notify a waiting task (aka "signal")
  ///
  /// If there are any tasks in [`wait_baton`] (or
  /// [`wait_no_relock`]), at least one of them will wake up and get
  /// `Some(`[`Baton`]`)` from wait_baton.
  ///
  /// Likewise, if there are any tasks in [`wait`], at least one of
  /// them will wake up and return.  But if that task is cancelled
  /// after `wait` completss, the notification may be lost.
  /// See [`wait`] and [`Baton`] for a discussion of the interaction
  /// between task cancellation and `notify_one`.
  ///
  /// Notifications do not "stack" or "count".  Calling `notify_one`
  /// several times might still wake up only one task.
  ///
  /// [`wait`]: Condvar::wait
  /// [`wait_baton`]: Condvar::wait_baton
  /// [`wait_no_relock`]: Condvar::wait_no_relock
  pub fn notify_one(&self) {
    self.0.lock().notify_one()
  }
}

impl CV {
  fn notify_one(&mut self) {
    //dbg!(&self.list);
    if let Some(entry) = self.list.front_mut() {
      match entry {
        Signaled | Broadcasted => { }, // notify_one is idempotent
        Waiting(waker) => {
          if let Some(waker) = waker.take() { waker.wake() }
          *entry = Signaled;
        },
      };
    }
  }
}

impl Condvar {
  /// Notify all waiting tasks (aka "broadcast")
  ///
  /// Wake up all tasks currently in [`wait`], [`wait_baton`],
  /// and [`wait_no_relock`],
  /// 
  /// Each the tasks in [`wait`] and [`wait_baton`] will start to try
  /// to reacquire the mutex; they will then (in general) take turns
  /// to return from `wait`/`wait_baton` with the mutex held.
  /// 
  /// All tasks will get `None` rather than `Some(` [`Baton`] `)`,
  /// from `wait_baton` or `wait_no_relock` - even possibly tasks
  /// which are in the process of waking up because of a previous call
  /// to `notify_one`.
  ///
  /// [`wait`]: Condvar::wait
  /// [`wait_baton`]: Condvar::wait_baton
  /// [`wait_no_relock`]: Condvar::wait_no_relock
  pub fn notify_all(&self) {
    let mut cv = self.0.lock();
    for entry in cv.list.iter_mut() {
      match entry {
        Signaled | Broadcasted => {
          *entry = Broadcasted; // no baton needed any more
        },
        Waiting(waker) => {
          if let Some(waker) = waker.take() { waker.wake() }
          *entry = Broadcasted;
        },
      };
    }
  }
}

impl Condvar {
  fn baton_from_bool<'c>(&'c self, yes: bool) -> Option<Baton<'c>> {
    if yes {
      Some(self.make_baton())
    } else {
      None
    }
  }

  /// Make a baton directly, without waiting
  ///
  /// This may be useful in unusual situations.
  ///
  /// If the returned `Baton` is simply dropped, this is the same as
  /// [`notify_one`].
  ///
  /// [`notify_one`]: Condvar::notify_one
  pub fn make_baton<'c>(&'c self) -> Baton<'c> {
    Baton { condvar: Some(self) }
  }
}

impl Baton<'_> {
  /// Declare that responsibility has been discharged
  ///
  /// The baton will be consumed, without generating any notifications.
  pub fn dispose(mut self) { let _ = self.condvar.take(); }

  /// Pass on the baton to someone else, if anyone else is waiting
  ///
  /// This is equivalent to `mem::drop`.
  pub fn pass(self) { /* drop impl will do the actual passing */ }
}

/// Extension trait for `Option<Baton>` to provide `dispose` and `pass`
pub trait BatonExt: Sized {
  /// Declare any responsibility has been discharged
  fn dispose(self);
  /// Pass on any responsibility to someone else
  fn pass(self) { /* drop impl will do the actual passing */ }
}
impl BatonExt for Option<Baton<'_>> {
  fn dispose(self) { self.map(Baton::dispose); }
}

impl<G> Drop for WS_Waiting<'_,G> where G: RelockMutexGuard {
  fn drop(&mut self) {
    if let Some(ent) = self.ent.take() {
      let mut cv = self.condvar.0.lock();
      cv.list.remove(ent);
    }
  }
}
impl Drop for WS_Locking_NS<'_> {
  fn drop(&mut self) {
    let _baton = self.condvar.baton_from_bool(self.baton);
    // we pass the baton to Baton::dorp */
  }
}

impl Drop for Baton<'_> {
  fn drop(&mut self) {
    if let Some(condvar) = self.condvar.take() {
      condvar.notify_one();
    }
  }
}