1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
use crate::repository::backend::common;
use crate::repository::backend::common::sync_backend::*;
use crate::repository::backend::*;
use crate::repository::{Chunk, EncryptedKey, Key};

use std::collections::HashMap;
use std::convert::TryInto;
use std::io::Cursor;
extern crate rmp_serde as rmps;

use super::Result;

#[derive(Debug)]
pub struct Mem {
    data: common::Segment<Cursor<Vec<u8>>>,
    index: HashMap<ChunkID, SegmentDescriptor>,
    manifest: Vec<StoredArchive>,
    chunk_settings: ChunkSettings,
    key: Option<EncryptedKey>,
    actual_key: Key,
    len: u64,
}

impl Mem {
    pub fn new_raw(chunk_settings: ChunkSettings, key: Key) -> Mem {
        let max = usize::max_value().try_into().unwrap();
        let data = common::Segment::new(
            Cursor::new(Vec::new()),
            Cursor::new(Vec::new()),
            max,
            chunk_settings,
            key.clone(),
        )
        .unwrap();
        Mem {
            data,
            index: HashMap::new(),
            manifest: Vec::new(),
            chunk_settings,
            actual_key: key,
            key: None,
            len: num_cpus::get() as u64,
        }
    }

    pub fn new(chunk_settings: ChunkSettings, key: Key) -> BackendHandle<Mem> {
        BackendHandle::new(Self::new_raw(chunk_settings, key))
    }
}

impl SyncManifest for Mem {
    type Iterator = std::vec::IntoIter<StoredArchive>;
    fn last_modification(&mut self) -> Result<DateTime<FixedOffset>> {
        if self.manifest.is_empty() {
            Err(BackendError::ManifestError(
                "No archives/timestamps present".to_string(),
            ))
        } else {
            let archive = &self.manifest[self.manifest.len() - 1];
            Ok(archive.timestamp())
        }
    }
    fn chunk_settings(&mut self) -> ChunkSettings {
        self.chunk_settings
    }
    fn archive_iterator(&mut self) -> Self::Iterator {
        self.manifest.clone().into_iter()
    }
    fn write_chunk_settings(&mut self, settings: ChunkSettings) -> Result<()> {
        self.chunk_settings = settings;
        Ok(())
    }
    fn write_archive(&mut self, archive: StoredArchive) -> Result<()> {
        self.manifest.push(archive);
        Ok(())
    }
    fn touch(&mut self) -> Result<()> {
        // This method doesnt really make sense on a non-persisting repository
        Ok(())
    }
}

impl SyncIndex for Mem {
    fn lookup_chunk(&mut self, id: ChunkID) -> Option<SegmentDescriptor> {
        self.index.get(&id).copied()
    }
    fn set_chunk(&mut self, id: ChunkID, location: SegmentDescriptor) -> Result<()> {
        self.index.insert(id, location);
        Ok(())
    }
    fn known_chunks(&mut self) -> HashSet<ChunkID> {
        self.index.keys().copied().collect::<HashSet<_>>()
    }
    fn commit_index(&mut self) -> Result<()> {
        // Does nothing, since this implementation does not commit
        Ok(())
    }
    fn chunk_count(&mut self) -> usize {
        self.index.len()
    }
}

impl SyncBackend for Mem {
    type SyncManifest = Self;
    type SyncIndex = Self;
    fn get_index(&mut self) -> &mut Self::SyncIndex {
        self
    }
    fn get_manifest(&mut self) -> &mut Self::SyncManifest {
        self
    }
    fn write_key(&mut self, key: EncryptedKey) -> Result<()> {
        self.key = Some(key);
        Ok(())
    }
    fn read_key(&mut self) -> Result<EncryptedKey> {
        if let Some(key) = self.key.clone() {
            Ok(key)
        } else {
            Err(BackendError::Unknown(
                "Tried to load an unset key".to_string(),
            ))
        }
    }
    fn read_chunk(&mut self, location: SegmentDescriptor) -> Result<Chunk> {
        self.data.read_chunk(location.start)
    }
    fn write_chunk(&mut self, chunk: Chunk) -> Result<SegmentDescriptor> {
        let start = self.data.write_chunk(chunk)?;
        Ok(SegmentDescriptor {
            segment_id: 0,
            start,
        })
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::repository::*;

    /// Makes sure accessing an unset key panics
    #[tokio::test(threaded_scheduler)]
    #[should_panic]
    async fn bad_key_access() {
        let key = Key::random(32);
        let backend = Mem::new(ChunkSettings::lightweight(), key);
        backend.read_key().await.unwrap();
    }

    /// Checks to make sure setting and retriving a key works
    #[tokio::test(threaded_scheduler)]
    async fn key_sanity() {
        let key = Key::random(32);
        let backend = Mem::new(ChunkSettings::lightweight(), key.clone());
        let key_key = [0_u8; 128];
        let encrypted_key =
            EncryptedKey::encrypt(&key, 1024, 1, Encryption::new_aes256ctr(), &key_key);
        backend.write_key(&encrypted_key).await.unwrap();
        let output = backend.read_key().await.unwrap().decrypt(&key_key).unwrap();
        assert_eq!(key, output);
    }
}