1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#![no_std]

pub use heapless_bytes::{consts, ArrayLength, Bytes};

const CONSTRUCTED: u8 = 1 << 5;
// const CONTEXT_SPECIFIC: u8 = 2 << 6;

/// ASN.1 Tags
#[derive(Debug, Clone, Copy, PartialEq)]
#[repr(u8)]
pub enum Tag {
    // Eoc = 0x00,
    // Boolean = 0x01,
    Integer = 0x02,
    // BitString = 0x03,
    // OctetString = 0x04,
    // Null = 0x05,
    // Oid = 0x06,
    Sequence = CONSTRUCTED | 0x10,
    // UtcTime = 0x17,
    // GeneralizedTime = 0x18,
    // ContextSpecificConstructed0 = CONTEXT_SPECIFIC | CONSTRUCTED | 0,
    // ContextSpecificConstructed1 = CONTEXT_SPECIFIC | CONSTRUCTED | 1,
    // ContextSpecificConstructed2 = CONTEXT_SPECIFIC | CONSTRUCTED | 2,
    // ContextSpecificConstructed3 = CONTEXT_SPECIFIC | CONSTRUCTED | 3,
}

impl From<Tag> for usize {
    fn from(tag: Tag) -> Self {
        tag as Self
    }
}

impl From<Tag> for u8 {
    fn from(tag: Tag) -> Self {
        tag as Self
    }
}

// the only error is buffer overflow
type Result = core::result::Result<(), ()>;

/// DER writer
#[derive(Debug)]
pub struct Der<N>(Bytes<N>)
where
    N: ArrayLength<u8>;

impl<N: ArrayLength<u8>> Default for Der<N> {
    fn default() -> Self {
        Self::new()
    }
}

impl<N: ArrayLength<u8>> core::ops::Deref for Der<N> {
    type Target = Bytes<N>;
    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<N: ArrayLength<u8>> core::ops::DerefMut for Der<N> {
    fn deref_mut(&mut self) -> &mut Bytes<N> {
        &mut self.0
    }
}

impl<N: ArrayLength<u8>> Der<N> {
    /// Create a new `Der` structure that writes values to the given buffer
    pub fn new() -> Self {
        Der(Bytes::new())
    }

    // // equivalent of method in std::io::Write
    // fn write_all(&mut self, data: &[u8]) -> Result {
    //     self.0.extend_from_slice(data)
    // }

    /// Return underlying buffer
    pub fn into_inner(self) -> Bytes<N> {
        self.0
    }

    // https://docs.microsoft.com/en-us/windows/win32/seccertenroll/about-encoded-length-and-value-bytes
    fn write_length_field(&mut self, length: usize) -> Result {
        if length < 0x80 {
            // values under 128: write length directly as u8
            self.extend_from_slice(&[length as u8])
        } else {
            // values at least 128:
            // - write number of bytes needed as u8, setting bit 7
            // - write l as big-endian bytes representation, with minimal length

            let mut repr = &length.to_be_bytes()[..];
            while repr[0] == 0 {
                repr = &repr[1..];
            }
            self.extend_from_slice(&[0x80 | repr.len() as u8])?;
            self.extend_from_slice(repr)
        }
    }

    //    // /// Write a `NULL` tag.
    //    // pub fn null(&mut self) -> Result {
    //    //     self.0.extend_from_slice(&[Tag::Null as u8, 0])?;
    //    //     Ok(())
    //    // }

    /// Write an arbitrary tag-length-value
    pub fn raw_tlv(&mut self, tag: Tag, value: &[u8]) -> Result {
        self.extend_from_slice(&[tag as u8])?;
        self.write_length_field(value.len())?;
        self.extend_from_slice(value)
    }

    /// Write the given input as integer.
    ///
    /// Assumes `input` is the big-endian representation of a non-negative `Integer`
    ///
    /// Not sure about good references, maybe:
    /// https://docs.microsoft.com/en-us/windows/win32/seccertenroll/about-integer
    ///
    /// From: https://docs.rs/ecdsa/0.3.0/src/ecdsa/convert.rs.html#205-219
    /// Compute ASN.1 DER encoded length for the provided scalar.
    /// The ASN.1 encoding is signed, so its leading bit must have value 0;
    /// it must also be of minimal length (so leading bytes of value 0 must be
    /// removed, except if that would contradict the rule about the sign bit).
    pub fn non_negative_integer(&mut self, mut integer: &[u8]) -> Result {
        self.extend_from_slice(&[Tag::Integer as u8])?;

        // strip leading zero bytes
        while !integer.is_empty() && integer[0] == 0 {
            integer = &integer[1..];
        }

        if integer.is_empty() || integer[0] >= 0x80 {
            self.write_length_field(integer.len() + 1)?;
            self.extend_from_slice(&[0x00])?;
        } else {
            self.write_length_field(integer.len())?;
        }

        self.extend_from_slice(integer)
    }

    /// Write a nested structure by passing in a handling function that writes
    /// the serialized intermediate structure.
    fn nested<F>(&mut self, tag: Tag, f: F) -> Result
    where
        F: FnOnce(&mut Der<N>) -> Result,
    {
        let before = self.len();

        // serialize the nested structure
        f(self)?;
        let written = self.len() - before;

        // generate Tag-Length prefix
        // 1 for tag, 1 for length prefix, 4 or 8 for usize itself
        //
        // could try something like: type PrefixSize =<consts::U2 as core::ops::Add<consts::U8>>::Output;
        // but not couldn't find a consts::Usize type;
        type PrefixSize = consts::U12;
        let mut prefix = Der::<PrefixSize>::new();

        // generate prefix consisting of "tag" and length of nested structure
        prefix.extend_from_slice(&[tag as u8])?;
        prefix.write_length_field(written)?;

        self.insert_slice_at(&prefix, before)
    }

    /// Write a `SEQUENCE` by passing in a handling function that writes to an intermediate `Vec`
    /// before writing the whole sequence to `self`.
    pub fn sequence<F>(&mut self, f: F) -> Result
    where
        F: FnOnce(&mut Der<N>) -> Result,
    {
        self.nested(Tag::Sequence, f)
    }
}

#[cfg(test)]
mod test {
    use super::*;

    //    #[test]
    //    fn max_prefix() {
    //        let mut u32_buf = [0u8; core::mem::size_of::<u32>() + 2];
    //        let mut prefix = Der::new(&mut u32_buf);
    //        prefix.0.extend_from_slice(&[0u8]).unwrap();
    //        assert!(prefix.write_length_field(u32::max_value() as usize).is_ok());
    //        assert_eq!([0u8, 132, 255, 255, 255, 255], prefix.as_ref());

    //        let mut u64_buf = [0u8; core::mem::size_of::<u64>() + 2];
    //        let mut prefix = Der::new(&mut u64_buf);
    //        prefix.0.extend_from_slice(&[0u8]).unwrap();
    //        assert!(prefix.write_length_field(u64::max_value() as usize).is_ok());
    //        assert_eq!([0, 136, 255, 255, 255, 255, 255, 255, 255, 255], prefix.as_ref());
    //    }

    #[test]
    fn write_asn1_der_ecdsa_signature() {
        let r = [
            167u8, 156, 58, 251, 253, 197, 176, 208, 165, 146, 155, 16, 217, 152, 192, 243, 206,
            76, 214, 207, 207, 180, 237, 8, 156, 160, 64, 32, 147, 82, 213, 158,
        ];
        let s = [
            184, 156, 136, 100, 87, 142, 84, 61, 235, 27, 193, 223, 254, 97, 11, 111, 80, 37, 46,
            150, 121, 96, 165, 96, 65, 242, 211, 180, 175, 91, 158, 88,
        ];
        // let mut buf = [0u8; 1024];
        let mut der = Der::<consts::U1024>::new();
        der.sequence(|der| {
            der.non_negative_integer(&r)?;
            der.non_negative_integer(&s)
        })
        .unwrap();

        #[rustfmt::skip]
        let expected = [
            48u8, 70,
            2, 33,
                0, 167, 156, 58, 251, 253, 197, 176, 208, 165, 146, 155, 16, 217, 152,
                192, 243, 206, 76, 214, 207, 207, 180, 237, 8, 156, 160, 64, 32, 147, 82, 213, 158,
            2, 33,
                0, 184, 156, 136, 100, 87, 142, 84, 61, 235, 27, 193, 223, 254, 97, 11, 111, 80,
                37, 46, 150, 121, 96, 165, 96, 65, 242, 211, 180, 175, 91, 158, 88,
        ];
        assert_eq!(der.len(), expected.len());
        assert_eq!(
            Bytes::<consts::U72>::try_from_slice(&der).unwrap(),
            Bytes::<consts::U72>::try_from_slice(&expected).unwrap(),
        );
        // assert_eq!(&got[..32], &expected[..32]);
        // assert_eq!(&got[32..64], &expected[32..64]);
        // assert_eq!(&got[64..], &expected[64..]);
    }
}

//// let mut der = Der::new(&mut buf);
//// der.sequence(|der| {
////     der.positive_integer(n)?;
////     der.positive_integer(e)
//// })
//// .unwrap();

//// /// Write an `OBJECT IDENTIFIER`.
//// pub fn oid(&mut self, input: &[u8]) -> Result<()> {
////     self.writer.0.extend_from_slice(&[Tag::Oid as u8])?;
////     self.write_length_field(input.len())?;
////     self.writer.0.extend_from_slice(&input)?;
////     Ok(())
//// }

//// /// Write raw bytes to `self`. This does not calculate length or apply. This should only be used
//// /// when you know you are dealing with bytes that are already DER encoded.
//// pub fn raw(&mut self, input: &[u8]) -> Result<()> {
////     Ok(self.writer.0.extend_from_slice(input)?)
//// }

//// /// Write a `BIT STRING`.
//// pub fn bit_string(&mut self, unused_bits: u8, bit_string: &[u8]) -> Result<()> {
////     self.writer.0.extend_from_slice(&[Tag::BitString as u8])?;
////     self.write_length_field(bit_string.len() + 1)?;
////     self.writer.0.extend_from_slice(&[unused_bits])?;
////     self.writer.0.extend_from_slice(&bit_string)?;
////     Ok(())
//// }

//// /// Write an `OCTET STRING`.
//// pub fn octet_string(&mut self, octet_string: &[u8]) -> Result<()> {
////     self.writer.0.extend_from_slice(&[Tag::OctetString as u8])?;
////     self.write_length_field(octet_string.len())?;
////     self.writer.0.extend_from_slice(&octet_string)?;
////     Ok(())
//// }
//// }

//// #[cfg(test)]
//// mod test {
////     use super::*;
////     use untrusted::Input;
////     use Error;

////     static RSA_2048_PKCS1: &'static [u8] = include_bytes!("../tests/rsa-2048.pkcs1.der");

////     #[test]
////     fn write_pkcs1() {
////         let input = Input::from(RSA_2048_PKCS1);
////         let (n, e) = input
////             .read_all(Error::Read, |input| {
////                 der::nested(input, Tag::Sequence, |input| {
////                     let n = der::positive_integer(input)?;
////                     let e = der::positive_integer(input)?;
////                     Ok((n.as_slice_less_safe(), e.as_slice_less_safe()))
////                 })
////             })
////             .unwrap();

////         let mut buf = Vec::new();
////         {
////             let mut der = Der::new(&mut buf);
////             der.sequence(|der| {
////                 der.positive_integer(n)?;
////                 der.positive_integer(e)
////             })
////             .unwrap();
////         }

////         assert_eq!(buf.as_slice(), RSA_2048_PKCS1);
////     }

////     #[test]
////     fn write_octet_string() {
////         let mut buf = Vec::new();
////         {
////             let mut der = Der::new(&mut buf);
////             der.octet_string(&[]).unwrap();
////         }

////         assert_eq!(&buf, &[0x04, 0x00]);

////         let mut buf = Vec::new();
////         {
////             let mut der = Der::new(&mut buf);
////             der.octet_string(&[0x0a, 0x0b, 0x0c]).unwrap();
////         }

////         assert_eq!(&buf, &[0x04, 0x03, 0x0a, 0x0b, 0x0c]);
////     }
//// }