1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
use crate::*;
use alloc::borrow::Cow;
use alloc::vec;
use core::convert::{TryFrom, TryInto};

#[cfg(feature = "bigint")]
#[cfg_attr(docsrs, doc(cfg(feature = "bigint")))]
pub use num_bigint::{BigInt, BigUint, Sign};

/// Decode an unsigned integer into a big endian byte slice with all leading
/// zeroes removed (if positive) and extra 0xff remove (if negative)
fn trim_slice<'a>(any: &'a Any<'_>) -> Result<&'a [u8]> {
    let bytes = any.data;

    if bytes.is_empty() || (bytes[0] != 0x00 && bytes[0] != 0xff) {
        return Ok(bytes);
    }

    match bytes.iter().position(|&b| b != 0) {
        // first byte is not 0
        Some(0) => (),
        // all bytes are 0
        None => return Ok(&bytes[bytes.len() - 1..]),
        Some(first) => return Ok(&bytes[first..]),
    }

    // same for negative integers : skip byte 0->n if byte 0->n = 0xff AND byte n+1 >= 0x80
    match bytes.windows(2).position(|s| match s {
        &[a, b] => !(a == 0xff && b >= 0x80),
        _ => true,
    }) {
        // first byte is not 0xff
        Some(0) => (),
        // all bytes are 0xff
        None => return Ok(&bytes[bytes.len() - 1..]),
        Some(first) => return Ok(&bytes[first..]),
    }

    Ok(bytes)
}

/// Decode an unsigned integer into a byte array of the requested size
/// containing a big endian integer.
fn decode_array_uint<const N: usize>(any: &Any<'_>) -> Result<[u8; N]> {
    if is_highest_bit_set(any.data) {
        return Err(Error::IntegerNegative);
    }
    let input = trim_slice(any)?;

    if input.len() > N {
        return Err(Error::IntegerTooLarge);
    }

    // Input has leading zeroes removed, so we need to add them back
    let mut output = [0u8; N];
    assert!(input.len() <= N);
    output[N.saturating_sub(input.len())..].copy_from_slice(input);
    Ok(output)
}

/// Decode an unsigned integer of the specified size.
///
/// Returns a byte array of the requested size containing a big endian integer.
fn decode_array_int<const N: usize>(any: &Any<'_>) -> Result<[u8; N]> {
    if any.data.len() > N {
        return Err(Error::IntegerTooLarge);
    }

    // any.tag().assert_eq(Tag::Integer)?;
    let mut output = [0xFFu8; N];
    let offset = N.saturating_sub(any.as_bytes().len());
    output[offset..].copy_from_slice(any.as_bytes());
    Ok(output)
}

/// Is the highest bit of the first byte in the slice 1? (if present)
#[inline]
fn is_highest_bit_set(bytes: &[u8]) -> bool {
    bytes
        .get(0)
        .map(|byte| byte & 0b10000000 != 0)
        .unwrap_or(false)
}

macro_rules! impl_int {
    ($uint:ty => $int:ty) => {
        impl<'a> TryFrom<Any<'a>> for $int {
            type Error = Error;

            fn try_from(any: Any<'a>) -> Result<Self> {
                TryFrom::try_from(&any)
            }
        }

        impl<'a, 'b> TryFrom<&'b Any<'a>> for $int {
            type Error = Error;

            fn try_from(any: &'b Any<'a>) -> Result<Self> {
                any.tag().assert_eq(Self::TAG)?;
                any.header.assert_primitive()?;
                let result = if is_highest_bit_set(any.as_bytes()) {
                    <$uint>::from_be_bytes(decode_array_int(&any)?) as $int
                } else {
                    Self::from_be_bytes(decode_array_uint(&any)?)
                };
                Ok(result)
            }
        }

        impl<'a> CheckDerConstraints for $int {
            fn check_constraints(any: &Any) -> Result<()> {
                check_der_int_constraints(any)
            }
        }

        impl DerAutoDerive for $int {}

        impl Tagged for $int {
            const TAG: Tag = Tag::Integer;
        }

        #[cfg(feature = "std")]
        impl ToDer for $int {
            fn to_der_len(&self) -> Result<usize> {
                let int = Integer::from(*self);
                int.to_der_len()
            }

            fn write_der(&self, writer: &mut dyn std::io::Write) -> SerializeResult<usize> {
                let int = Integer::from(*self);
                int.write_der(writer)
            }

            fn write_der_header(&self, writer: &mut dyn std::io::Write) -> SerializeResult<usize> {
                let int = Integer::from(*self);
                int.write_der_header(writer)
            }

            fn write_der_content(&self, writer: &mut dyn std::io::Write) -> SerializeResult<usize> {
                let int = Integer::from(*self);
                int.write_der_content(writer)
            }
        }
    };
}

macro_rules! impl_uint {
    ($ty:ty) => {
        impl<'a> TryFrom<Any<'a>> for $ty {
            type Error = Error;

            fn try_from(any: Any<'a>) -> Result<Self> {
                TryFrom::try_from(&any)
            }
        }
        impl<'a, 'b> TryFrom<&'b Any<'a>> for $ty {
            type Error = Error;

            fn try_from(any: &'b Any<'a>) -> Result<Self> {
                any.tag().assert_eq(Self::TAG)?;
                any.header.assert_primitive()?;
                let result = Self::from_be_bytes(decode_array_uint(any)?);
                Ok(result)
            }
        }
        impl<'a> CheckDerConstraints for $ty {
            fn check_constraints(any: &Any) -> Result<()> {
                check_der_int_constraints(any)
            }
        }

        impl DerAutoDerive for $ty {}

        impl Tagged for $ty {
            const TAG: Tag = Tag::Integer;
        }

        #[cfg(feature = "std")]
        impl ToDer for $ty {
            fn to_der_len(&self) -> Result<usize> {
                let int = Integer::from(*self);
                int.to_der_len()
            }

            fn write_der(&self, writer: &mut dyn std::io::Write) -> SerializeResult<usize> {
                let int = Integer::from(*self);
                int.write_der(writer)
            }

            fn write_der_header(&self, writer: &mut dyn std::io::Write) -> SerializeResult<usize> {
                let int = Integer::from(*self);
                int.write_der_header(writer)
            }

            fn write_der_content(&self, writer: &mut dyn std::io::Write) -> SerializeResult<usize> {
                let int = Integer::from(*self);
                int.write_der_content(writer)
            }
        }
    };
}

impl_uint!(u8);
impl_uint!(u16);
impl_uint!(u32);
impl_uint!(u64);
impl_uint!(u128);
impl_int!(u8 => i8);
impl_int!(u16 => i16);
impl_int!(u32 => i32);
impl_int!(u64 => i64);
impl_int!(u128 => i128);

/// ASN.1 `INTEGER` type
///
/// Generic representation for integer types.
/// BER/DER integers can be of any size, so it is not possible to store them as simple integers (they
/// are stored as raw bytes).
///
/// The internal representation can be obtained using `.as_ref()`.
///
/// # Note
///
/// Methods from/to BER and DER encodings are also implemented for primitive types
/// (`u8`, `u16` to `u128`, and `i8` to `i128`).
/// In most cases, it is easier to use these types directly.
///
/// # Examples
///
/// Creating an `Integer`
///
/// ```
/// use asn1_rs::Integer;
///
/// // unsigned
/// let i = Integer::from(4);
/// assert_eq!(i.as_ref(), &[4]);
/// // signed
/// let j = Integer::from(-2);
/// assert_eq!(j.as_ref(), &[0x0, 0xff, 0xff, 0xff, 0xfe]);
/// ```
///
/// Converting an `Integer` to a primitive type (using the `TryInto` trait)
///
/// ```
/// use asn1_rs::{Error, Integer};
/// use std::convert::TryInto;
///
/// let i = Integer::new(&[0x12, 0x34, 0x56, 0x78]);
/// // converts to an u32
/// let n: u32 = i.try_into().unwrap();
///
/// // Same, but converting to an u16: will fail, value cannot fit into an u16
/// let i = Integer::new(&[0x12, 0x34, 0x56, 0x78]);
/// assert_eq!(i.try_into() as Result<u16, _>, Err(Error::IntegerTooLarge));
/// ```
///
/// Encoding an `Integer` to DER
///
/// ```
/// use asn1_rs::{Integer, ToDer};
///
/// let i = Integer::from(4);
/// let v = i.to_der_vec().unwrap();
/// assert_eq!(&v, &[2, 1, 4]);
///
/// // same, with primitive types
/// let v = 4.to_der_vec().unwrap();
/// assert_eq!(&v, &[2, 1, 4]);
/// ```
#[derive(Debug, Eq, PartialEq)]
pub struct Integer<'a> {
    pub(crate) data: Cow<'a, [u8]>,
}

impl<'a> Integer<'a> {
    /// Creates a new `Integer` containing the given value (borrowed).
    #[inline]
    pub const fn new(s: &'a [u8]) -> Self {
        Integer {
            data: Cow::Borrowed(s),
        }
    }

    /// Creates a borrowed `Any` for this object
    #[inline]
    pub fn any(&'a self) -> Any<'a> {
        Any::from_tag_and_data(Self::TAG, &self.data)
    }

    /// Returns a `BigInt` built from this `Integer` value.
    #[cfg(feature = "bigint")]
    #[cfg_attr(docsrs, doc(cfg(feature = "bigint")))]
    pub fn as_bigint(&self) -> BigInt {
        BigInt::from_signed_bytes_be(&self.data)
    }

    /// Returns a `BigUint` built from this `Integer` value.
    #[cfg(feature = "bigint")]
    #[cfg_attr(docsrs, doc(cfg(feature = "bigint")))]
    pub fn as_biguint(&self) -> Result<BigUint> {
        if is_highest_bit_set(&self.data) {
            Err(Error::IntegerNegative)
        } else {
            Ok(BigUint::from_bytes_be(&self.data))
        }
    }

    /// Build an `Integer` from a constant array of bytes representation of an integer.
    pub fn from_const_array<const N: usize>(b: [u8; N]) -> Self {
        let mut idx = 0;
        // skip leading 0s
        while idx < b.len() {
            if b[idx] == 0 {
                idx += 1;
                continue;
            }
            break;
        }
        if idx == b.len() {
            Integer {
                data: Cow::Borrowed(&[0]),
            }
        } else {
            Integer {
                data: Cow::Owned(b[idx..].to_vec()),
            }
        }
    }

    fn from_const_array_negative<const N: usize>(b: [u8; N]) -> Self {
        let mut out = vec![0];
        out.extend_from_slice(&b);

        Integer {
            data: Cow::Owned(out),
        }
    }
}

macro_rules! impl_from_to {
    ($ty:ty, $sty:expr, $from:ident, $to:ident) => {
        impl From<$ty> for Integer<'_> {
            fn from(i: $ty) -> Self {
                Self::$from(i)
            }
        }

        impl TryFrom<Integer<'_>> for $ty {
            type Error = Error;

            fn try_from(value: Integer<'_>) -> Result<Self> {
                value.$to()
            }
        }

        impl Integer<'_> {
            #[doc = "Attempts to convert an `Integer` to a `"]
            #[doc = $sty]
            #[doc = "`."]
            #[doc = ""]
            #[doc = "This function returns an `IntegerTooLarge` error if the integer will not fit into the output type."]
            pub fn $to(&self) -> Result<$ty> {
                self.any().try_into()
            }
        }
    };
    (IMPL SIGNED $ty:ty, $sty:expr, $from:ident, $to:ident) => {
        impl_from_to!($ty, $sty, $from, $to);

        impl Integer<'_> {
            #[doc = "Converts a `"]
            #[doc = $sty]
            #[doc = "` to an `Integer`"]
            #[doc = ""]
            #[doc = "Note: this function allocates data."]
            pub fn $from(i: $ty) -> Self {
                let b = i.to_be_bytes();
                if i >= 0 {
                    Self::from_const_array(b)
                } else {
                    Self::from_const_array_negative(b)
                }
            }
        }
    };
    (IMPL UNSIGNED $ty:ty, $sty:expr, $from:ident, $to:ident) => {
        impl_from_to!($ty, $sty, $from, $to);

        impl Integer<'_> {
            #[doc = "Converts a `"]
            #[doc = $sty]
            #[doc = "` to an `Integer`"]
            #[doc = ""]
            #[doc = "Note: this function allocates data."]
            pub fn $from(i: $ty) -> Self {
                Self::from_const_array(i.to_be_bytes())
            }
        }
    };
    (SIGNED $ty:ty, $from:ident, $to:ident) => {
        impl_from_to!(IMPL SIGNED $ty, stringify!($ty), $from, $to);
    };
    (UNSIGNED $ty:ty, $from:ident, $to:ident) => {
        impl_from_to!(IMPL UNSIGNED $ty, stringify!($ty), $from, $to);
    };
}

impl_from_to!(SIGNED i8, from_i8, as_i8);
impl_from_to!(SIGNED i16, from_i16, as_i16);
impl_from_to!(SIGNED i32, from_i32, as_i32);
impl_from_to!(SIGNED i64, from_i64, as_i64);
impl_from_to!(SIGNED i128, from_i128, as_i128);

impl_from_to!(UNSIGNED u8, from_u8, as_u8);
impl_from_to!(UNSIGNED u16, from_u16, as_u16);
impl_from_to!(UNSIGNED u32, from_u32, as_u32);
impl_from_to!(UNSIGNED u64, from_u64, as_u64);
impl_from_to!(UNSIGNED u128, from_u128, as_u128);

impl<'a> AsRef<[u8]> for Integer<'a> {
    fn as_ref(&self) -> &[u8] {
        &self.data
    }
}

impl<'a> TryFrom<Any<'a>> for Integer<'a> {
    type Error = Error;

    fn try_from(any: Any<'a>) -> Result<Integer<'a>> {
        TryFrom::try_from(&any)
    }
}

impl<'a, 'b> TryFrom<&'b Any<'a>> for Integer<'a> {
    type Error = Error;

    fn try_from(any: &'b Any<'a>) -> Result<Integer<'a>> {
        any.tag().assert_eq(Self::TAG)?;
        Ok(Integer {
            data: Cow::Borrowed(any.data),
        })
    }
}

impl<'a> CheckDerConstraints for Integer<'a> {
    fn check_constraints(any: &Any) -> Result<()> {
        check_der_int_constraints(any)
    }
}

fn check_der_int_constraints(any: &Any) -> Result<()> {
    any.header.assert_primitive()?;
    any.header.length.assert_definite()?;
    match any.as_bytes() {
        [] => Err(Error::DerConstraintFailed(DerConstraint::IntegerEmpty)),
        [0] => Ok(()),
        // leading zeroes
        [0, byte, ..] if *byte < 0x80 => Err(Error::DerConstraintFailed(
            DerConstraint::IntegerLeadingZeroes,
        )),
        // negative integer with non-minimal encoding
        [0xff, byte, ..] if *byte >= 0x80 => {
            Err(Error::DerConstraintFailed(DerConstraint::IntegerLeadingFF))
        }
        _ => Ok(()),
    }
}

impl DerAutoDerive for Integer<'_> {}

impl<'a> Tagged for Integer<'a> {
    const TAG: Tag = Tag::Integer;
}

#[cfg(feature = "std")]
impl ToDer for Integer<'_> {
    fn to_der_len(&self) -> Result<usize> {
        let sz = self.data.len();
        if sz < 127 {
            // 1 (class+tag) + 1 (length) + len
            Ok(2 + sz)
        } else {
            // hmm, a very long integer. anyway:
            // 1 (class+tag) + n (length) + len
            let n = Length::Definite(sz).to_der_len()?;
            Ok(1 + n + sz)
        }
    }

    fn write_der_header(&self, writer: &mut dyn std::io::Write) -> SerializeResult<usize> {
        let header = Header::new(
            Class::Universal,
            false,
            Self::TAG,
            Length::Definite(self.data.len()),
        );
        header.write_der_header(writer).map_err(Into::into)
    }

    fn write_der_content(&self, writer: &mut dyn std::io::Write) -> SerializeResult<usize> {
        writer.write(&self.data).map_err(Into::into)
    }
}

/// Helper macro to declare integers at compile-time
///
/// [`Integer`] stores the encoded representation of the integer, so declaring
/// an integer requires to either use a runtime function or provide the encoded value.
/// This macro simplifies this task by encoding the value.
/// It can be used the following ways:
///
/// - `int!(1234)`: Create a const expression for the corresponding `Integer<'static>`
/// - `int!(raw 1234)`: Return the DER encoded form as a byte array (hex-encoded, big-endian
///    representation from the integer, with leading zeroes removed).
///
/// # Examples
///
/// ```rust
/// use asn1_rs::{int, Integer};
///
/// const INT0: Integer = int!(1234);
/// ```
#[macro_export]
macro_rules! int {
    (raw $item:expr) => {
        $crate::exports::asn1_rs_impl::encode_int!($item)
    };
    (rel $item:expr) => {
        $crate::exports::asn1_rs_impl::encode_int!(rel $item)
    };
    ($item:expr) => {
        $crate::Integer::new(
            &$crate::int!(raw $item),
        )
    };
}

#[cfg(test)]
mod tests {
    use crate::{Any, FromDer, Header, Tag};
    use std::convert::TryInto;

    // Vectors from Section 5.7 of:
    // https://luca.ntop.org/Teaching/Appunti/asn1.html
    pub(crate) const I0_BYTES: &[u8] = &[0x02, 0x01, 0x00];
    pub(crate) const I127_BYTES: &[u8] = &[0x02, 0x01, 0x7F];
    pub(crate) const I128_BYTES: &[u8] = &[0x02, 0x02, 0x00, 0x80];
    pub(crate) const I256_BYTES: &[u8] = &[0x02, 0x02, 0x01, 0x00];
    pub(crate) const INEG128_BYTES: &[u8] = &[0x02, 0x01, 0x80];
    pub(crate) const INEG129_BYTES: &[u8] = &[0x02, 0x02, 0xFF, 0x7F];

    // Additional vectors
    pub(crate) const I255_BYTES: &[u8] = &[0x02, 0x02, 0x00, 0xFF];
    pub(crate) const I32767_BYTES: &[u8] = &[0x02, 0x02, 0x7F, 0xFF];
    pub(crate) const I65535_BYTES: &[u8] = &[0x02, 0x03, 0x00, 0xFF, 0xFF];
    pub(crate) const INEG32768_BYTES: &[u8] = &[0x02, 0x02, 0x80, 0x00];

    #[test]
    fn decode_i8() {
        assert_eq!(0, i8::from_der(I0_BYTES).unwrap().1);
        assert_eq!(127, i8::from_der(I127_BYTES).unwrap().1);
        assert_eq!(-128, i8::from_der(INEG128_BYTES).unwrap().1);
    }

    #[test]
    fn decode_i16() {
        assert_eq!(0, i16::from_der(I0_BYTES).unwrap().1);
        assert_eq!(127, i16::from_der(I127_BYTES).unwrap().1);
        assert_eq!(128, i16::from_der(I128_BYTES).unwrap().1);
        assert_eq!(255, i16::from_der(I255_BYTES).unwrap().1);
        assert_eq!(256, i16::from_der(I256_BYTES).unwrap().1);
        assert_eq!(32767, i16::from_der(I32767_BYTES).unwrap().1);
        assert_eq!(-128, i16::from_der(INEG128_BYTES).unwrap().1);
        assert_eq!(-129, i16::from_der(INEG129_BYTES).unwrap().1);
        assert_eq!(-32768, i16::from_der(INEG32768_BYTES).unwrap().1);
    }

    #[test]
    fn decode_u8() {
        assert_eq!(0, u8::from_der(I0_BYTES).unwrap().1);
        assert_eq!(127, u8::from_der(I127_BYTES).unwrap().1);
        assert_eq!(255, u8::from_der(I255_BYTES).unwrap().1);
    }

    #[test]
    fn decode_u16() {
        assert_eq!(0, u16::from_der(I0_BYTES).unwrap().1);
        assert_eq!(127, u16::from_der(I127_BYTES).unwrap().1);
        assert_eq!(255, u16::from_der(I255_BYTES).unwrap().1);
        assert_eq!(256, u16::from_der(I256_BYTES).unwrap().1);
        assert_eq!(32767, u16::from_der(I32767_BYTES).unwrap().1);
        assert_eq!(65535, u16::from_der(I65535_BYTES).unwrap().1);
    }

    /// Integers must be encoded with a minimum number of octets
    #[test]
    fn reject_non_canonical() {
        assert!(i8::from_der(&[0x02, 0x02, 0x00, 0x00]).is_err());
        assert!(i16::from_der(&[0x02, 0x02, 0x00, 0x00]).is_err());
        assert!(u8::from_der(&[0x02, 0x02, 0x00, 0x00]).is_err());
        assert!(u16::from_der(&[0x02, 0x02, 0x00, 0x00]).is_err());
    }

    #[test]
    fn declare_int() {
        let int = super::int!(1234);
        assert_eq!(int.try_into(), Ok(1234));
    }

    #[test]
    fn trim_slice() {
        use super::trim_slice;
        let h = Header::new_simple(Tag(0));
        // no zero nor ff - nothing to remove
        let input: &[u8] = &[0x7f, 0xff, 0x00, 0x02];
        assert_eq!(Ok(input), trim_slice(&Any::new(h.clone(), input)));
        //
        // 0x00
        //
        // empty - nothing to remove
        let input: &[u8] = &[];
        assert_eq!(Ok(input), trim_slice(&Any::new(h.clone(), input)));
        // one zero - nothing to remove
        let input: &[u8] = &[0];
        assert_eq!(Ok(input), trim_slice(&Any::new(h.clone(), input)));
        // all zeroes - keep only one
        let input: &[u8] = &[0, 0, 0];
        assert_eq!(Ok(&input[2..]), trim_slice(&Any::new(h.clone(), input)));
        // some zeroes - keep only the non-zero part
        let input: &[u8] = &[0, 0, 1];
        assert_eq!(Ok(&input[2..]), trim_slice(&Any::new(h.clone(), input)));
        //
        // 0xff
        //
        // one ff - nothing to remove
        let input: &[u8] = &[0xff];
        assert_eq!(Ok(input), trim_slice(&Any::new(h.clone(), input)));
        // all ff - keep only one
        let input: &[u8] = &[0xff, 0xff, 0xff];
        assert_eq!(Ok(&input[2..]), trim_slice(&Any::new(h.clone(), input)));
        // some ff - keep only the non-zero part
        let input: &[u8] = &[0xff, 0xff, 1];
        assert_eq!(Ok(&input[1..]), trim_slice(&Any::new(h.clone(), input)));
        // some ff and a MSB 1 - keep only the non-zero part
        let input: &[u8] = &[0xff, 0xff, 0x80, 1];
        assert_eq!(Ok(&input[2..]), trim_slice(&Any::new(h.clone(), input)));
    }
}