1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
use super::parser::Register;

pub use super::parser::count_syllables;
use super::parser::{self, InsType, Instruction};

#[derive(Debug, Clone)]
struct Memory {
    register0: i64,
    register1: i64,
    stack: Vec<i64>,
}

impl Memory {
    fn new() -> Memory {
        Memory {
            register0: 0,
            register1: 0,
            stack: vec![],
        }
    }

    fn store_syllables(&mut self, register: Register, syllables: i64) {
        match register {
            Register::Register0 => self.register0 = syllables,
            Register::Register1 => self.register1 = syllables,
        }
    }

    fn push_to_stack(&mut self, val: i64) {
        self.stack.push(val);
    }

    fn push(&mut self, register: Register) {
        match register {
            Register::Register0 => self.stack.push(self.register0),
            Register::Register1 => self.stack.push(self.register1),
        }
    }

    fn pop(&mut self, register: Register) {
        if let Some(val) = self.stack.pop() {
            match register {
                Register::Register0 => self.register0 = val,
                Register::Register1 => self.register1 = val,
            }
        }
    }

    fn multiply(&mut self, register: Register) {
        match register {
            Register::Register0 => self.register0 *= self.register1,
            Register::Register1 => self.register1 *= self.register0,
        }
    }

    fn add(&mut self, register: Register) {
        match register {
            Register::Register0 => self.register0 += self.register1,
            Register::Register1 => self.register1 += self.register0,
        }
    }

    fn get_active(&self, register: Register) -> i64 {
        match register {
            Register::Register0 => self.register0,
            Register::Register1 => self.register1,
        }
    }

    fn get_inactive(&self, register: Register) -> i64 {
        match register {
            Register::Register0 => self.register1,
            Register::Register1 => self.register0,
        }
    }

    fn negate(&mut self, register: Register) {
        match register {
            Register::Register0 => self.register0 = -self.register0,
            Register::Register1 => self.register1 = -self.register1,
        }
    }
}

pub fn execute(program: &str) -> String {
    let instructions = parser::parse(program);

    let mut mem = Memory::new();
    let mut output: String = String::new();

    let mut instruction_pointer: usize = 0;

    log::info!(
        "{: <51} | {: ^4} | {: ^4} | {: ^7}",
        "instruction",
        "r0",
        "r1",
        "stack"
    );
    log::info!("{:-<51} | {:-^4} | {:-^4} | {:-^7}", "", "", "", "");

    'outer: while let Some(ins) = instructions.get(instruction_pointer) {
        let Instruction {
            instruction,
            register: reg,
            ref line,
        } = *ins;

        match instruction {
            InsType::ConditionalGoto(syllables) => {
                if mem.get_active(reg) > syllables as i64 {
                    instruction_pointer =
                        (mem.get_inactive(reg).abs() as usize) % (instructions.len() as usize);
                    continue 'outer;
                }
            }
            InsType::Negate => mem.negate(reg),
            InsType::Multiply => mem.multiply(reg),
            InsType::Add => mem.add(reg),
            InsType::PrintChar => {
                let printable = (mem.get_active(reg).abs() % std::u8::MAX as i64) as u8;
                output = format!("{}{}", output, printable as char);
            }
            InsType::PrintValue => output = format!("{}{}", output, mem.get_active(reg)),
            InsType::Pop => mem.pop(reg),
            InsType::Push => mem.push(reg),
            InsType::Store(syllables) => mem.store_syllables(reg, syllables as i64),
            InsType::ConditionalPush {
                prev_syllables,
                cur_syllables,
            } => {
                if mem.get_active(reg) < mem.get_inactive(reg) {
                    mem.push_to_stack(prev_syllables as i64);
                } else {
                    mem.push_to_stack(cur_syllables as i64);
                }
            }
            InsType::Goto => {
                instruction_pointer =
                    (mem.get_active(reg).abs() as usize) % (instructions.len() as usize);
                continue 'outer;
            }
            InsType::Noop => (),
        }

        log::info!(
            "{: <51} | {: ^4} | {: ^4} | {:^?}",
            line,
            mem.register0,
            mem.register1,
            mem.stack
        );

        instruction_pointer += 1;
    }

    output
}

#[cfg(test)]
mod tests {
    use super::*;
    use pretty_assertions::assert_eq;

    #[test]
    fn mem_get_inactive() {
        let mut mem = Memory::new();
        let r0 = 10;
        let r1 = 11;
        mem.store_syllables(Register::Register0, r0);
        mem.store_syllables(Register::Register1, r1);

        assert_eq!(mem.get_inactive(Register::Register0), r1);
        assert_eq!(mem.get_inactive(Register::Register1), r0);
    }

    #[test]
    fn mem_push() {
        let mut mem = Memory::new();
        let reg = Register::Register0;
        mem.store_syllables(reg, 1);
        mem.push(reg);
        assert_eq!(mem.stack, vec![1]);
        let reg = Register::Register1;
        mem.store_syllables(reg, 2);
        mem.push(reg);
        assert_eq!(mem.stack, vec![1, 2]);
    }

    #[test]
    fn alliteration() {
        let alliteration_program = r#"
poem or calculator or nothing
    somebody once
    fish fosh
word.

"#
        .trim_start();

        let result = execute(alliteration_program);
        assert_eq!(result, "");
    }

    #[test]
    fn rhyming() {
        let rhyming_program = r#"
somebody once told me 
    he took a new elf 
and stabbed it with a shelf
pop,
print.
then he took blue
and stabbed it with some you 
pop,
print.
"#;
        let result = execute(rhyming_program);
        assert_eq!(result, "64");
    }

    #[test]
    fn factorial() {
        let factorial_program = r#"

  it is a calculator, like a
      poem, is a poem, and finds
        factori-
          als
  The input is the syllAbles
in the title, count them, as one counts
  (q) what other poem, programs can be writ
  (a) anything a Turing
    machine-machine-machine
    would do
re/cur
    sion works too, in poems, programs, and this
       a lovely.
poem or calculator or nothing
how lovely can it be?
"#;
        let four_factorial = format!("lovely poem\n{}", factorial_program);
        println!("{}", four_factorial);
        let four_factorial_res = "24\n".to_string();
        assert_eq!(execute(&four_factorial), four_factorial_res);

        let five_factorial = format!("lovely poem and\n{}", factorial_program);
        let five_factorial_res = "120\n".to_string();
        assert_eq!(execute(&five_factorial), five_factorial_res);
    }

    #[test]
    fn logging() {
        // everything should work as expected if logging is enabled.
        std::env::set_var("RUST_LOG", "info");
        factorial();
    }
}