1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
use std::ops::Rem;

use num_traits::{CheckedRem, NumCast};

use crate::datatypes::PrimitiveType;
use crate::{
    array::{Array, PrimitiveArray},
    compute::{
        arithmetics::{ArrayCheckedRem, ArrayRem},
        arity::{binary, binary_checked, unary, unary_checked},
    },
};
use strength_reduce::{
    StrengthReducedU16, StrengthReducedU32, StrengthReducedU64, StrengthReducedU8,
};

use super::NativeArithmetics;

/// Remainder of two primitive arrays with the same type.
/// Panics if the divisor is zero of one pair of values overflows.
///
/// # Examples
/// ```
/// use arrow2::compute::arithmetics::basic::rem;
/// use arrow2::array::Int32Array;
///
/// let a = Int32Array::from(&[Some(10), Some(7)]);
/// let b = Int32Array::from(&[Some(5), Some(6)]);
/// let result = rem(&a, &b);
/// let expected = Int32Array::from(&[Some(0), Some(1)]);
/// assert_eq!(result, expected)
/// ```
pub fn rem<T>(lhs: &PrimitiveArray<T>, rhs: &PrimitiveArray<T>) -> PrimitiveArray<T>
where
    T: NativeArithmetics + Rem<Output = T>,
{
    binary(lhs, rhs, lhs.data_type().clone(), |a, b| a % b)
}

/// Checked remainder of two primitive arrays. If the result from the remainder
/// overflows, the result for the operation will change the validity array
/// making this operation None
///
/// # Examples
/// ```
/// use arrow2::compute::arithmetics::basic::checked_rem;
/// use arrow2::array::Int8Array;
///
/// let a = Int8Array::from(&[Some(-100i8), Some(10i8)]);
/// let b = Int8Array::from(&[Some(100i8), Some(0i8)]);
/// let result = checked_rem(&a, &b);
/// let expected = Int8Array::from(&[Some(-0i8), None]);
/// assert_eq!(result, expected);
/// ```
pub fn checked_rem<T>(lhs: &PrimitiveArray<T>, rhs: &PrimitiveArray<T>) -> PrimitiveArray<T>
where
    T: NativeArithmetics + CheckedRem<Output = T>,
{
    let op = move |a: T, b: T| a.checked_rem(&b);

    binary_checked(lhs, rhs, lhs.data_type().clone(), op)
}

impl<T> ArrayRem<PrimitiveArray<T>> for PrimitiveArray<T>
where
    T: NativeArithmetics + Rem<Output = T>,
{
    fn rem(&self, rhs: &PrimitiveArray<T>) -> Self {
        rem(self, rhs)
    }
}

impl<T> ArrayCheckedRem<PrimitiveArray<T>> for PrimitiveArray<T>
where
    T: NativeArithmetics + CheckedRem<Output = T>,
{
    fn checked_rem(&self, rhs: &PrimitiveArray<T>) -> Self {
        checked_rem(self, rhs)
    }
}

/// Remainder a primitive array of type T by a scalar T.
/// Panics if the divisor is zero.
///
/// # Examples
/// ```
/// use arrow2::compute::arithmetics::basic::rem_scalar;
/// use arrow2::array::Int32Array;
///
/// let a = Int32Array::from(&[None, Some(6), None, Some(7)]);
/// let result = rem_scalar(&a, &2i32);
/// let expected = Int32Array::from(&[None, Some(0), None, Some(1)]);
/// assert_eq!(result, expected)
/// ```
pub fn rem_scalar<T>(lhs: &PrimitiveArray<T>, rhs: &T) -> PrimitiveArray<T>
where
    T: NativeArithmetics + Rem<Output = T> + NumCast,
{
    let rhs = *rhs;

    match T::PRIMITIVE {
        PrimitiveType::UInt64 => {
            let lhs = lhs.as_any().downcast_ref::<PrimitiveArray<u64>>().unwrap();
            let rhs = rhs.to_u64().unwrap();

            let reduced_rem = StrengthReducedU64::new(rhs);

            // small hack to avoid a transmute of `PrimitiveArray<u64>` to `PrimitiveArray<T>`
            let r = unary(lhs, |a| a % reduced_rem, lhs.data_type().clone());
            (&r as &dyn Array)
                .as_any()
                .downcast_ref::<PrimitiveArray<T>>()
                .unwrap()
                .clone()
        }
        PrimitiveType::UInt32 => {
            let lhs = lhs.as_any().downcast_ref::<PrimitiveArray<u32>>().unwrap();
            let rhs = rhs.to_u32().unwrap();

            let reduced_rem = StrengthReducedU32::new(rhs);

            let r = unary(lhs, |a| a % reduced_rem, lhs.data_type().clone());
            // small hack to avoid an unsafe transmute of `PrimitiveArray<u64>` to `PrimitiveArray<T>`
            (&r as &dyn Array)
                .as_any()
                .downcast_ref::<PrimitiveArray<T>>()
                .unwrap()
                .clone()
        }
        PrimitiveType::UInt16 => {
            let lhs = lhs.as_any().downcast_ref::<PrimitiveArray<u16>>().unwrap();
            let rhs = rhs.to_u16().unwrap();

            let reduced_rem = StrengthReducedU16::new(rhs);

            let r = unary(lhs, |a| a % reduced_rem, lhs.data_type().clone());
            // small hack to avoid an unsafe transmute of `PrimitiveArray<u16>` to `PrimitiveArray<T>`
            (&r as &dyn Array)
                .as_any()
                .downcast_ref::<PrimitiveArray<T>>()
                .unwrap()
                .clone()
        }
        PrimitiveType::UInt8 => {
            let lhs = lhs.as_any().downcast_ref::<PrimitiveArray<u8>>().unwrap();
            let rhs = rhs.to_u8().unwrap();

            let reduced_rem = StrengthReducedU8::new(rhs);

            let r = unary(lhs, |a| a % reduced_rem, lhs.data_type().clone());
            // small hack to avoid an unsafe transmute of `PrimitiveArray<u8>` to `PrimitiveArray<T>`
            (&r as &dyn Array)
                .as_any()
                .downcast_ref::<PrimitiveArray<T>>()
                .unwrap()
                .clone()
        }
        _ => unary(lhs, |a| a % rhs, lhs.data_type().clone()),
    }
}

/// Checked remainder of a primitive array of type T by a scalar T. If the
/// divisor is zero then the validity array is changed to None.
///
/// # Examples
/// ```
/// use arrow2::compute::arithmetics::basic::checked_rem_scalar;
/// use arrow2::array::Int8Array;
///
/// let a = Int8Array::from(&[Some(-100i8)]);
/// let result = checked_rem_scalar(&a, &100i8);
/// let expected = Int8Array::from(&[Some(0i8)]);
/// assert_eq!(result, expected);
/// ```
pub fn checked_rem_scalar<T>(lhs: &PrimitiveArray<T>, rhs: &T) -> PrimitiveArray<T>
where
    T: NativeArithmetics + CheckedRem<Output = T>,
{
    let rhs = *rhs;
    let op = move |a: T| a.checked_rem(&rhs);

    unary_checked(lhs, op, lhs.data_type().clone())
}

impl<T> ArrayRem<T> for PrimitiveArray<T>
where
    T: NativeArithmetics + Rem<Output = T> + NumCast,
{
    fn rem(&self, rhs: &T) -> Self {
        rem_scalar(self, rhs)
    }
}

impl<T> ArrayCheckedRem<T> for PrimitiveArray<T>
where
    T: NativeArithmetics + CheckedRem<Output = T>,
{
    fn checked_rem(&self, rhs: &T) -> Self {
        checked_rem_scalar(self, rhs)
    }
}