1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Utils for working with bits

#[cfg(feature = "simd")]
use packed_simd::u8x64;

static BIT_MASK: [u8; 8] = [1, 2, 4, 8, 16, 32, 64, 128];

static POPCOUNT_TABLE: [u8; 256] = [
    0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4,
    3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5,
    3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4,
    3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4,
    3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5,
    3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4,
    3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
    3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7,
    6, 7, 7, 8,
];

/// Returns the nearest number that is `>=` than `num` and is a multiple of 64
#[inline]
pub fn round_upto_multiple_of_64(num: usize) -> usize {
    round_upto_power_of_2(num, 64)
}

/// Returns the nearest multiple of `factor` that is `>=` than `num`. Here `factor` must
/// be a power of 2.
fn round_upto_power_of_2(num: usize, factor: usize) -> usize {
    debug_assert!(factor > 0 && (factor & (factor - 1)) == 0);
    (num + (factor - 1)) & !(factor - 1)
}

/// Returns whether bit at position `i` in `data` is set or not
#[inline]
pub fn get_bit(data: &[u8], i: usize) -> bool {
    (data[i >> 3] & BIT_MASK[i & 7]) != 0
}

/// Returns whether bit at position `i` in `data` is set or not.
///
/// # Safety
///
/// Note this doesn't do any bound checking, for performance reason. The caller is
/// responsible to guarantee that `i` is within bounds.
#[inline]
pub unsafe fn get_bit_raw(data: *const u8, i: usize) -> bool {
    (*data.add(i >> 3) & BIT_MASK[i & 7]) != 0
}

/// Sets bit at position `i` for `data`
#[inline]
pub fn set_bit(data: &mut [u8], i: usize) {
    data[i >> 3] |= BIT_MASK[i & 7]
}

/// Sets bit at position `i` for `data`
///
/// # Safety
///
/// Note this doesn't do any bound checking, for performance reason. The caller is
/// responsible to guarantee that `i` is within bounds.
#[inline]
pub unsafe fn set_bit_raw(data: *mut u8, i: usize) {
    *data.add(i >> 3) |= BIT_MASK[i & 7]
}

/// Sets bits in the non-inclusive range `start..end` for `data`
///
/// # Safety
///
/// Note this doesn't do any bound checking, for performance reason. The caller is
/// responsible to guarantee that both `start` and `end` are within bounds.
#[inline]
pub unsafe fn set_bits_raw(data: *mut u8, start: usize, end: usize) {
    let start_byte = (start >> 3) as isize;
    let end_byte = (end >> 3) as isize;

    let start_offset = (start & 7) as u8;
    let end_offset = (end & 7) as u8;

    // All set apart from lowest `start_offset` bits
    let start_mask = !((1 << start_offset) - 1);
    // All clear apart from lowest `end_offset` bits
    let end_mask = (1 << end_offset) - 1;

    if start_byte == end_byte {
        *data.offset(start_byte) |= start_mask & end_mask;
    } else {
        *data.offset(start_byte) |= start_mask;
        for i in (start_byte + 1)..end_byte {
            *data.offset(i) = 0xFF;
        }
        *data.offset(end_byte) |= end_mask;
    }
}

/// Returns the number of 1-bits in `data`
#[inline]
pub fn count_set_bits(data: &[u8]) -> usize {
    let mut count: usize = 0;
    for u in data {
        count += POPCOUNT_TABLE[*u as usize] as usize;
    }
    count
}

/// Returns the number of 1-bits in `data`, starting from `offset` with `length` bits
/// inspected. Note that both `offset` and `length` are measured in bits.
#[inline]
pub fn count_set_bits_offset(data: &[u8], offset: usize, length: usize) -> usize {
    let bit_end = offset + length;
    assert!(bit_end <= (data.len() << 3));

    let byte_start = std::cmp::min(round_upto_power_of_2(offset, 8), bit_end);
    let num_bytes = (bit_end - byte_start) >> 3;

    let mut result = 0;

    for i in offset..byte_start {
        if get_bit(data, i) {
            result += 1;
        }
    }
    for i in 0..num_bytes {
        result += POPCOUNT_TABLE[data[(byte_start >> 3) + i] as usize] as usize;
    }
    for i in (byte_start + (num_bytes << 3))..bit_end {
        if get_bit(data, i) {
            result += 1;
        }
    }

    result
}

/// Returns the ceil of `value`/`divisor`
#[inline]
pub fn ceil(value: usize, divisor: usize) -> usize {
    let (quot, rem) = (value / divisor, value % divisor);
    if rem > 0 && divisor > 0 {
        quot + 1
    } else {
        quot
    }
}

/// Performs SIMD bitwise binary operations.
///
/// # Safety
///
/// Note that each slice should be 64 bytes and it is the callers responsibility to ensure
/// that this is the case.  If passed slices larger than 64 bytes the operation will only
/// be performed on the first 64 bytes.  Slices less than 64 bytes will panic.
#[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), feature = "simd"))]
pub unsafe fn bitwise_bin_op_simd<F>(left: &[u8], right: &[u8], result: &mut [u8], op: F)
where
    F: Fn(u8x64, u8x64) -> u8x64,
{
    let left_simd = u8x64::from_slice_unaligned_unchecked(left);
    let right_simd = u8x64::from_slice_unaligned_unchecked(right);
    let simd_result = op(left_simd, right_simd);
    simd_result.write_to_slice_unaligned_unchecked(result);
}

#[cfg(test)]
mod tests {
    use rand::{thread_rng, Rng};
    use std::collections::HashSet;

    use super::*;

    #[test]
    fn test_round_upto_multiple_of_64() {
        assert_eq!(0, round_upto_multiple_of_64(0));
        assert_eq!(64, round_upto_multiple_of_64(1));
        assert_eq!(64, round_upto_multiple_of_64(63));
        assert_eq!(64, round_upto_multiple_of_64(64));
        assert_eq!(128, round_upto_multiple_of_64(65));
        assert_eq!(192, round_upto_multiple_of_64(129));
    }

    #[test]
    fn test_get_bit() {
        // 00001101
        assert_eq!(true, get_bit(&[0b00001101], 0));
        assert_eq!(false, get_bit(&[0b00001101], 1));
        assert_eq!(true, get_bit(&[0b00001101], 2));
        assert_eq!(true, get_bit(&[0b00001101], 3));

        // 01001001 01010010
        assert_eq!(true, get_bit(&[0b01001001, 0b01010010], 0));
        assert_eq!(false, get_bit(&[0b01001001, 0b01010010], 1));
        assert_eq!(false, get_bit(&[0b01001001, 0b01010010], 2));
        assert_eq!(true, get_bit(&[0b01001001, 0b01010010], 3));
        assert_eq!(false, get_bit(&[0b01001001, 0b01010010], 4));
        assert_eq!(false, get_bit(&[0b01001001, 0b01010010], 5));
        assert_eq!(true, get_bit(&[0b01001001, 0b01010010], 6));
        assert_eq!(false, get_bit(&[0b01001001, 0b01010010], 7));
        assert_eq!(false, get_bit(&[0b01001001, 0b01010010], 8));
        assert_eq!(true, get_bit(&[0b01001001, 0b01010010], 9));
        assert_eq!(false, get_bit(&[0b01001001, 0b01010010], 10));
        assert_eq!(false, get_bit(&[0b01001001, 0b01010010], 11));
        assert_eq!(true, get_bit(&[0b01001001, 0b01010010], 12));
        assert_eq!(false, get_bit(&[0b01001001, 0b01010010], 13));
        assert_eq!(true, get_bit(&[0b01001001, 0b01010010], 14));
        assert_eq!(false, get_bit(&[0b01001001, 0b01010010], 15));
    }

    #[test]
    fn test_get_bit_raw() {
        const NUM_BYTE: usize = 10;
        let mut buf = vec![0; NUM_BYTE];
        let mut expected = vec![];
        let mut rng = thread_rng();
        for i in 0..8 * NUM_BYTE {
            let b = rng.gen_bool(0.5);
            expected.push(b);
            if b {
                set_bit(&mut buf[..], i)
            }
        }

        let raw_ptr = buf.as_ptr();
        for (i, b) in expected.iter().enumerate() {
            unsafe {
                assert_eq!(*b, get_bit_raw(raw_ptr, i));
            }
        }
    }

    #[test]
    fn test_set_bit() {
        let mut b = [0b00000000];
        set_bit(&mut b, 0);
        assert_eq!([0b00000001], b);
        set_bit(&mut b, 2);
        assert_eq!([0b00000101], b);
        set_bit(&mut b, 5);
        assert_eq!([0b00100101], b);
    }

    #[test]
    fn test_set_bit_raw() {
        const NUM_BYTE: usize = 10;
        let mut buf = vec![0; NUM_BYTE];
        let mut expected = vec![];
        let mut rng = thread_rng();
        for i in 0..8 * NUM_BYTE {
            let b = rng.gen_bool(0.5);
            expected.push(b);
            if b {
                unsafe {
                    set_bit_raw(buf.as_mut_ptr(), i);
                }
            }
        }

        let raw_ptr = buf.as_ptr();
        for (i, b) in expected.iter().enumerate() {
            unsafe {
                assert_eq!(*b, get_bit_raw(raw_ptr, i));
            }
        }
    }

    #[test]
    fn test_set_bits_raw() {
        const NUM_BYTE: usize = 64;
        const NUM_BLOCKS: usize = 12;
        const MAX_BLOCK_SIZE: usize = 32;
        let mut buf = vec![0; NUM_BYTE];

        let mut expected = Vec::with_capacity(NUM_BYTE * 8);
        expected.resize(NUM_BYTE * 8, false);

        let mut rng = thread_rng();

        for _ in 0..NUM_BLOCKS {
            let start = rng.gen_range(0, NUM_BYTE * 8 - MAX_BLOCK_SIZE);
            let end = start + rng.gen_range(1, MAX_BLOCK_SIZE);
            unsafe {
                set_bits_raw(buf.as_mut_ptr(), start, end);
            }
            for i in start..end {
                expected[i] = true;
            }
        }

        let raw_ptr = buf.as_ptr();
        for (i, b) in expected.iter().enumerate() {
            unsafe {
                assert_eq!(*b, get_bit_raw(raw_ptr, i));
            }
        }
    }

    #[test]
    fn test_get_set_bit_roundtrip() {
        const NUM_BYTES: usize = 10;
        const NUM_SETS: usize = 10;

        let mut buffer: [u8; NUM_BYTES * 8] = [0; NUM_BYTES * 8];
        let mut v = HashSet::new();
        let mut rng = thread_rng();
        for _ in 0..NUM_SETS {
            let offset = rng.gen_range(0, 8 * NUM_BYTES);
            v.insert(offset);
            set_bit(&mut buffer[..], offset);
        }
        for i in 0..NUM_BYTES * 8 {
            assert_eq!(v.contains(&i), get_bit(&buffer[..], i));
        }
    }

    #[test]
    fn test_count_bits_slice() {
        assert_eq!(0, count_set_bits(&[0b00000000]));
        assert_eq!(8, count_set_bits(&[0b11111111]));
        assert_eq!(3, count_set_bits(&[0b00001101]));
        assert_eq!(6, count_set_bits(&[0b01001001, 0b01010010]));
    }

    #[test]
    fn test_count_bits_offset_slice() {
        assert_eq!(8, count_set_bits_offset(&[0b11111111], 0, 8));
        assert_eq!(3, count_set_bits_offset(&[0b11111111], 0, 3));
        assert_eq!(5, count_set_bits_offset(&[0b11111111], 3, 5));
        assert_eq!(1, count_set_bits_offset(&[0b11111111], 3, 1));
        assert_eq!(0, count_set_bits_offset(&[0b11111111], 8, 0));
        assert_eq!(2, count_set_bits_offset(&[0b01010101], 0, 3));
        assert_eq!(16, count_set_bits_offset(&[0b11111111, 0b11111111], 0, 16));
        assert_eq!(10, count_set_bits_offset(&[0b11111111, 0b11111111], 0, 10));
        assert_eq!(10, count_set_bits_offset(&[0b11111111, 0b11111111], 3, 10));
        assert_eq!(8, count_set_bits_offset(&[0b11111111, 0b11111111], 8, 8));
        assert_eq!(5, count_set_bits_offset(&[0b11111111, 0b11111111], 11, 5));
        assert_eq!(0, count_set_bits_offset(&[0b11111111, 0b11111111], 16, 0));
        assert_eq!(2, count_set_bits_offset(&[0b01101101, 0b10101010], 7, 5));
        assert_eq!(4, count_set_bits_offset(&[0b01101101, 0b10101010], 7, 9));
    }

    #[test]
    fn test_ceil() {
        assert_eq!(ceil(0, 1), 0);
        assert_eq!(ceil(1, 1), 1);
        assert_eq!(ceil(1, 2), 1);
        assert_eq!(ceil(1, 8), 1);
        assert_eq!(ceil(7, 8), 1);
        assert_eq!(ceil(8, 8), 1);
        assert_eq!(ceil(9, 8), 2);
        assert_eq!(ceil(9, 9), 1);
        assert_eq!(ceil(10000000000, 10), 1000000000);
        assert_eq!(ceil(10, 10000000000), 1);
        assert_eq!(ceil(10000000000, 1000000000), 10);
    }

    #[test]
    #[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), feature = "simd"))]
    fn test_bitwise_and_simd() {
        let buf1 = [0b00110011u8; 64];
        let buf2 = [0b11110000u8; 64];
        let mut buf3 = [0b00000000; 64];
        unsafe { bitwise_bin_op_simd(&buf1, &buf2, &mut buf3, |a, b| a & b) };
        for i in buf3.iter() {
            assert_eq!(&0b00110000u8, i);
        }
    }

    #[test]
    #[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), feature = "simd"))]
    fn test_bitwise_or_simd() {
        let buf1 = [0b00110011u8; 64];
        let buf2 = [0b11110000u8; 64];
        let mut buf3 = [0b00000000; 64];
        unsafe { bitwise_bin_op_simd(&buf1, &buf2, &mut buf3, |a, b| a | b) };
        for i in buf3.iter() {
            assert_eq!(&0b11110011u8, i);
        }
    }
}