1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
//! **arrayvec** provides the types `ArrayVec` and `ArrayString`: 
//! array-backed vector and string types, which store their contents inline.
//!
//! The arrayvec package has the following cargo features:
//!
//! - `std`
//!   - Optional, enabled by default
//!   - Use libstd; disable to use `no_std` instead.
//!
//! - `serde`
//!   - Optional
//!   - Enable serialization for ArrayVec and ArrayString using serde 1.x
//! - `array-sizes-33-128`, `array-sizes-129-255`
//!   - Optional
//!   - Enable more array sizes (see [Array] for more information)
//!
//! - `unstable-const-fn`
//!   - Optional
//!   - Makes [`ArrayVec::new`] and [`ArrayString::new`] `const fn`s,
//!     using the nightly `const_fn` feature.
//!   - Unstable and requires nightly.
//!
//! ## Rust Version
//!
//! This version of arrayvec requires Rust 1.36 or later.
//!
#![doc(html_root_url="https://docs.rs/arrayvec/0.4/")]
#![cfg_attr(not(feature="std"), no_std)]
#![cfg_attr(feature="unstable-const-fn", feature(const_fn))]

#[cfg(feature="serde")]
extern crate serde;

#[cfg(not(feature="std"))]
extern crate core as std;

use std::cmp;
use std::iter;
use std::mem;
use std::ops::{Bound, Deref, DerefMut, RangeBounds};
use std::ptr;
use std::slice;

// extra traits
use std::borrow::{Borrow, BorrowMut};
use std::hash::{Hash, Hasher};
use std::fmt;

#[cfg(feature="std")]
use std::io;


mod maybe_uninit;
use crate::maybe_uninit::MaybeUninit;

#[cfg(feature="serde")]
use serde::{Serialize, Deserialize, Serializer, Deserializer};

mod array;
mod array_string;
mod char;
mod errors;

pub use crate::array::Array;
use crate::array::Index;
pub use crate::array_string::ArrayString;
pub use crate::errors::CapacityError;


/// A vector with a fixed capacity.
///
/// The `ArrayVec` is a vector backed by a fixed size array. It keeps track of
/// the number of initialized elements.
///
/// The vector is a contiguous value that you can store directly on the stack
/// if needed.
///
/// It offers a simple API but also dereferences to a slice, so
/// that the full slice API is available.
///
/// ArrayVec can be converted into a by value iterator.
pub struct ArrayVec<A: Array> {
    xs: MaybeUninit<A>,
    len: A::Index,
}

impl<A: Array> Drop for ArrayVec<A> {
    fn drop(&mut self) {
        self.clear();

        // MaybeUninit inhibits array's drop
    }
}

macro_rules! panic_oob {
    ($method_name:expr, $index:expr, $len:expr) => {
        panic!(concat!("ArrayVec::", $method_name, ": index {} is out of bounds in vector of length {}"),
               $index, $len)
    }
}

impl<A: Array> ArrayVec<A> {
    /// Create a new empty `ArrayVec`.
    ///
    /// Capacity is inferred from the type parameter.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 16]>::new();
    /// array.push(1);
    /// array.push(2);
    /// assert_eq!(&array[..], &[1, 2]);
    /// assert_eq!(array.capacity(), 16);
    /// ```
    #[cfg(not(feature="unstable-const-fn"))]
    pub fn new() -> ArrayVec<A> {
        unsafe {
            ArrayVec { xs: MaybeUninit::uninitialized(), len: Index::ZERO }
        }
    }

    #[cfg(feature="unstable-const-fn")]
    pub const fn new() -> ArrayVec<A> {
        unsafe {
            ArrayVec { xs: MaybeUninit::uninitialized(), len: Index::ZERO }
        }
    }

    /// Return the number of elements in the `ArrayVec`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3]);
    /// array.pop();
    /// assert_eq!(array.len(), 2);
    /// ```
    #[inline]
    pub fn len(&self) -> usize { self.len.to_usize() }

    /// Returns whether the `ArrayVec` is empty.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1]);
    /// array.pop();
    /// assert_eq!(array.is_empty(), true);
    /// ```
    #[inline]
    pub fn is_empty(&self) -> bool { self.len() == 0 }

    /// Return the capacity of the `ArrayVec`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let array = ArrayVec::from([1, 2, 3]);
    /// assert_eq!(array.capacity(), 3);
    /// ```
    #[inline(always)]
    pub fn capacity(&self) -> usize { A::CAPACITY }

    /// Return if the `ArrayVec` is completely filled.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 1]>::new();
    /// assert!(!array.is_full());
    /// array.push(1);
    /// assert!(array.is_full());
    /// ```
    pub fn is_full(&self) -> bool { self.len() == self.capacity() }

    /// Returns the capacity left in the `ArrayVec`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3]);
    /// array.pop();
    /// assert_eq!(array.remaining_capacity(), 1);
    /// ```
    pub fn remaining_capacity(&self) -> usize {
        self.capacity() - self.len()
    }

    /// Push `element` to the end of the vector.
    ///
    /// ***Panics*** if the vector is already full.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 2]>::new();
    ///
    /// array.push(1);
    /// array.push(2);
    ///
    /// assert_eq!(&array[..], &[1, 2]);
    /// ```
    pub fn push(&mut self, element: A::Item) {
        self.try_push(element).unwrap()
    }

    /// Push `element` to the end of the vector.
    ///
    /// Return `Ok` if the push succeeds, or return an error if the vector
    /// is already full.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 2]>::new();
    ///
    /// let push1 = array.try_push(1);
    /// let push2 = array.try_push(2);
    ///
    /// assert!(push1.is_ok());
    /// assert!(push2.is_ok());
    ///
    /// assert_eq!(&array[..], &[1, 2]);
    ///
    /// let overflow = array.try_push(3);
    ///
    /// assert!(overflow.is_err());
    /// ```
    pub fn try_push(&mut self, element: A::Item) -> Result<(), CapacityError<A::Item>> {
        if self.len() < A::CAPACITY {
            unsafe {
                self.push_unchecked(element);
            }
            Ok(())
        } else {
            Err(CapacityError::new(element))
        }
    }


    /// Push `element` to the end of the vector without checking the capacity.
    ///
    /// It is up to the caller to ensure the capacity of the vector is
    /// sufficiently large.
    ///
    /// This method uses *debug assertions* to check that the arrayvec is not full.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 2]>::new();
    ///
    /// if array.len() + 2 <= array.capacity() {
    ///     unsafe {
    ///         array.push_unchecked(1);
    ///         array.push_unchecked(2);
    ///     }
    /// }
    ///
    /// assert_eq!(&array[..], &[1, 2]);
    /// ```
    pub unsafe fn push_unchecked(&mut self, element: A::Item) {
        let len = self.len();
        debug_assert!(len < A::CAPACITY);
        ptr::write(self.get_unchecked_ptr(len), element);
        self.set_len(len + 1);
    }

    /// Get pointer to where element at `index` would be
    unsafe fn get_unchecked_ptr(&mut self, index: usize) -> *mut A::Item {
        self.xs.ptr_mut().add(index)
    }

    /// Insert `element` at position `index`.
    ///
    /// Shift up all elements after `index`.
    ///
    /// It is an error if the index is greater than the length or if the
    /// arrayvec is full.
    ///
    /// ***Panics*** if the array is full or the `index` is out of bounds. See
    /// `try_insert` for fallible version.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 2]>::new();
    ///
    /// array.insert(0, "x");
    /// array.insert(0, "y");
    /// assert_eq!(&array[..], &["y", "x"]);
    ///
    /// ```
    pub fn insert(&mut self, index: usize, element: A::Item) {
        self.try_insert(index, element).unwrap()
    }

    /// Insert `element` at position `index`.
    ///
    /// Shift up all elements after `index`; the `index` must be less than
    /// or equal to the length.
    ///
    /// Returns an error if vector is already at full capacity.
    ///
    /// ***Panics*** `index` is out of bounds.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 2]>::new();
    ///
    /// assert!(array.try_insert(0, "x").is_ok());
    /// assert!(array.try_insert(0, "y").is_ok());
    /// assert!(array.try_insert(0, "z").is_err());
    /// assert_eq!(&array[..], &["y", "x"]);
    ///
    /// ```
    pub fn try_insert(&mut self, index: usize, element: A::Item) -> Result<(), CapacityError<A::Item>> {
        if index > self.len() {
            panic_oob!("try_insert", index, self.len())
        }
        if self.len() == self.capacity() {
            return Err(CapacityError::new(element));
        }
        let len = self.len();

        // follows is just like Vec<T>
        unsafe { // infallible
            // The spot to put the new value
            {
                let p: *mut _ = self.get_unchecked_ptr(index);
                // Shift everything over to make space. (Duplicating the
                // `index`th element into two consecutive places.)
                ptr::copy(p, p.offset(1), len - index);
                // Write it in, overwriting the first copy of the `index`th
                // element.
                ptr::write(p, element);
            }
            self.set_len(len + 1);
        }
        Ok(())
    }

    /// Remove the last element in the vector and return it.
    ///
    /// Return `Some(` *element* `)` if the vector is non-empty, else `None`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 2]>::new();
    ///
    /// array.push(1);
    ///
    /// assert_eq!(array.pop(), Some(1));
    /// assert_eq!(array.pop(), None);
    /// ```
    pub fn pop(&mut self) -> Option<A::Item> {
        if self.len() == 0 {
            return None;
        }
        unsafe {
            let new_len = self.len() - 1;
            self.set_len(new_len);
            Some(ptr::read(self.get_unchecked_ptr(new_len)))
        }
    }

    /// Remove the element at `index` and swap the last element into its place.
    ///
    /// This operation is O(1).
    ///
    /// Return the *element* if the index is in bounds, else panic.
    ///
    /// ***Panics*** if the `index` is out of bounds.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3]);
    ///
    /// assert_eq!(array.swap_remove(0), 1);
    /// assert_eq!(&array[..], &[3, 2]);
    ///
    /// assert_eq!(array.swap_remove(1), 2);
    /// assert_eq!(&array[..], &[3]);
    /// ```
    pub fn swap_remove(&mut self, index: usize) -> A::Item {
        self.swap_pop(index)
            .unwrap_or_else(|| {
                panic_oob!("swap_remove", index, self.len())
            })
    }

    /// Remove the element at `index` and swap the last element into its place.
    ///
    /// This is a checked version of `.swap_remove`.  
    /// This operation is O(1).
    ///
    /// Return `Some(` *element* `)` if the index is in bounds, else `None`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3]);
    ///
    /// assert_eq!(array.swap_pop(0), Some(1));
    /// assert_eq!(&array[..], &[3, 2]);
    ///
    /// assert_eq!(array.swap_pop(10), None);
    /// ```
    pub fn swap_pop(&mut self, index: usize) -> Option<A::Item> {
        let len = self.len();
        if index >= len {
            return None;
        }
        self.swap(index, len - 1);
        self.pop()
    }

    /// Remove the element at `index` and shift down the following elements.
    ///
    /// The `index` must be strictly less than the length of the vector.
    ///
    /// ***Panics*** if the `index` is out of bounds.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3]);
    ///
    /// let removed_elt = array.remove(0);
    /// assert_eq!(removed_elt, 1);
    /// assert_eq!(&array[..], &[2, 3]);
    /// ```
    pub fn remove(&mut self, index: usize) -> A::Item {
        self.pop_at(index)
            .unwrap_or_else(|| {
                panic_oob!("remove", index, self.len())
            })
    }

    /// Remove the element at `index` and shift down the following elements.
    ///
    /// This is a checked version of `.remove(index)`. Returns `None` if there
    /// is no element at `index`. Otherwise, return the element inside `Some`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3]);
    ///
    /// assert!(array.pop_at(0).is_some());
    /// assert_eq!(&array[..], &[2, 3]);
    ///
    /// assert!(array.pop_at(2).is_none());
    /// assert!(array.pop_at(10).is_none());
    /// ```
    pub fn pop_at(&mut self, index: usize) -> Option<A::Item> {
        if index >= self.len() {
            None
        } else {
            self.drain(index..index + 1).next()
        }
    }

    /// Shortens the vector, keeping the first `len` elements and dropping
    /// the rest.
    ///
    /// If `len` is greater than the vector’s current length this has no
    /// effect.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3, 4, 5]);
    /// array.truncate(3);
    /// assert_eq!(&array[..], &[1, 2, 3]);
    /// array.truncate(4);
    /// assert_eq!(&array[..], &[1, 2, 3]);
    /// ```
    pub fn truncate(&mut self, new_len: usize) {
        unsafe {
            if new_len < self.len() {
                let tail: *mut [_] = &mut self[new_len..];
                self.len = Index::from(new_len);
                ptr::drop_in_place(tail);
            }
        }
    }

    /// Remove all elements in the vector.
    pub fn clear(&mut self) {
        self.truncate(0)
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` such that `f(&mut e)` returns false.
    /// This method operates in place and preserves the order of the retained
    /// elements.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3, 4]);
    /// array.retain(|x| *x & 1 != 0 );
    /// assert_eq!(&array[..], &[1, 3]);
    /// ```
    pub fn retain<F>(&mut self, mut f: F)
        where F: FnMut(&mut A::Item) -> bool
    {
        let len = self.len();
        let mut del = 0;
        {
            let v = &mut **self;

            for i in 0..len {
                if !f(&mut v[i]) {
                    del += 1;
                } else if del > 0 {
                    v.swap(i - del, i);
                }
            }
        }
        if del > 0 {
            self.drain(len - del..);
        }
    }

    /// Set the vector’s length without dropping or moving out elements
    ///
    /// This method is `unsafe` because it changes the notion of the
    /// number of “valid” elements in the vector. Use with care.
    ///
    /// This method uses *debug assertions* to check that `length` is
    /// not greater than the capacity.
    pub unsafe fn set_len(&mut self, length: usize) {
        debug_assert!(length <= self.capacity());
        self.len = Index::from(length);
    }

    /// Copy and appends all elements in a slice to the `ArrayVec`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut vec: ArrayVec<[usize; 10]> = ArrayVec::new();
    /// vec.push(1);
    /// vec.try_extend_from_slice(&[2, 3]).unwrap();
    /// assert_eq!(&vec[..], &[1, 2, 3]);
    /// ```
    ///
    /// # Errors
    ///
    /// This method will return an error if the capacity left (see
    /// [`remaining_capacity`]) is smaller then the length of the provided
    /// slice.
    ///
    /// [`remaining_capacity`]: #method.remaining_capacity
    pub fn try_extend_from_slice(&mut self, other: &[A::Item]) -> Result<(), CapacityError>
        where A::Item: Copy,
    {
        if self.remaining_capacity() < other.len() {
            return Err(CapacityError::new(()));
        }

        let self_len = self.len();
        let other_len = other.len();

        unsafe {
            let dst = self.xs.ptr_mut().add(self_len);
            ptr::copy_nonoverlapping(other.as_ptr(), dst, other_len);
            self.set_len(self_len + other_len);
        }
        Ok(())
    }

    /// Create a draining iterator that removes the specified range in the vector
    /// and yields the removed items from start to end. The element range is
    /// removed even if the iterator is not consumed until the end.
    ///
    /// Note: It is unspecified how many elements are removed from the vector,
    /// if the `Drain` value is leaked.
    ///
    /// **Panics** if the starting point is greater than the end point or if
    /// the end point is greater than the length of the vector.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut v = ArrayVec::from([1, 2, 3]);
    /// let u: ArrayVec<[_; 3]> = v.drain(0..2).collect();
    /// assert_eq!(&v[..], &[3]);
    /// assert_eq!(&u[..], &[1, 2]);
    /// ```
    pub fn drain<R>(&mut self, range: R) -> Drain<A>
        where R: RangeBounds<usize>
    {
        // Memory safety
        //
        // When the Drain is first created, it shortens the length of
        // the source vector to make sure no uninitialized or moved-from elements
        // are accessible at all if the Drain's destructor never gets to run.
        //
        // Drain will ptr::read out the values to remove.
        // When finished, remaining tail of the vec is copied back to cover
        // the hole, and the vector length is restored to the new length.
        //
        let len = self.len();
        let start = match range.start_bound() {
            Bound::Unbounded => 0,
            Bound::Included(&i) => i,
            Bound::Excluded(&i) => i.saturating_add(1),
        };
        let end = match range.end_bound() {
            Bound::Excluded(&j) => j,
            Bound::Included(&j) => j.saturating_add(1),
            Bound::Unbounded => len,
        };
        self.drain_range(start, end)
    }

    fn drain_range(&mut self, start: usize, end: usize) -> Drain<A>
    {
        let len = self.len();

        // bounds check happens here (before length is changed!)
        let range_slice: *const _ = &self[start..end];

        // Calling `set_len` creates a fresh and thus unique mutable references, making all
        // older aliases we created invalid. So we cannot call that function.
        self.len = Index::from(start);

        unsafe {
            Drain {
                tail_start: end,
                tail_len: len - end,
                iter: (*range_slice).iter(),
                vec: self as *mut _,
            }
        }
    }

    /// Return the inner fixed size array, if it is full to its capacity.
    ///
    /// Return an `Ok` value with the array if length equals capacity,
    /// return an `Err` with self otherwise.
    pub fn into_inner(self) -> Result<A, Self> {
        if self.len() < self.capacity() {
            Err(self)
        } else {
            unsafe {
                let array = ptr::read(self.xs.ptr() as *const A);
                mem::forget(self);
                Ok(array)
            }
        }
    }

    /// Dispose of `self` (same as drop)
    #[deprecated="Use std::mem::drop instead, if at all needed."]
    pub fn dispose(mut self) {
        self.clear();
        mem::forget(self);
    }

    /// Return a slice containing all elements of the vector.
    pub fn as_slice(&self) -> &[A::Item] {
        self
    }

    /// Return a mutable slice containing all elements of the vector.
    pub fn as_mut_slice(&mut self) -> &mut [A::Item] {
        self
    }

    /// Return a raw pointer to the vector's buffer.
    pub fn as_ptr(&self) -> *const A::Item {
        self.xs.ptr()
    }

    /// Return a raw mutable pointer to the vector's buffer.
    pub fn as_mut_ptr(&mut self) -> *mut A::Item {
        self.xs.ptr_mut()
    }
}

impl<A: Array> Deref for ArrayVec<A> {
    type Target = [A::Item];
    #[inline]
    fn deref(&self) -> &[A::Item] {
        unsafe {
            slice::from_raw_parts(self.xs.ptr(), self.len())
        }
    }
}

impl<A: Array> DerefMut for ArrayVec<A> {
    #[inline]
    fn deref_mut(&mut self) -> &mut [A::Item] {
        let len = self.len();
        unsafe {
            slice::from_raw_parts_mut(self.xs.ptr_mut(), len)
        }
    }
}

/// Create an `ArrayVec` from an array.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1, 2, 3]);
/// assert_eq!(array.len(), 3);
/// assert_eq!(array.capacity(), 3);
/// ```
impl<A: Array> From<A> for ArrayVec<A> {
    fn from(array: A) -> Self {
        ArrayVec { xs: MaybeUninit::from(array), len: Index::from(A::CAPACITY) }
    }
}


/// Try to create an `ArrayVec` from a slice. This will return an error if the slice was too big to
/// fit.
///
/// ```
/// use arrayvec::ArrayVec;
/// use std::convert::TryInto as _;
///
/// let array: ArrayVec<[_; 4]> = (&[1, 2, 3] as &[_]).try_into().unwrap();
/// assert_eq!(array.len(), 3);
/// assert_eq!(array.capacity(), 4);
/// ```
impl<A: Array> std::convert::TryFrom<&[A::Item]> for ArrayVec<A>
    where
        A::Item: Clone,
{
    type Error = CapacityError;

    fn try_from(slice: &[A::Item]) -> Result<Self, Self::Error> {
        if A::CAPACITY < slice.len() {
            Err(CapacityError::new(()))
        } else {
            let mut array = Self::new();
            array.extend(slice.iter().cloned());
            Ok(array)
        }
    }
}


/// Iterate the `ArrayVec` with references to each element.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let array = ArrayVec::from([1, 2, 3]);
///
/// for elt in &array {
///     // ...
/// }
/// ```
impl<'a, A: Array> IntoIterator for &'a ArrayVec<A> {
    type Item = &'a A::Item;
    type IntoIter = slice::Iter<'a, A::Item>;
    fn into_iter(self) -> Self::IntoIter { self.iter() }
}

/// Iterate the `ArrayVec` with mutable references to each element.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1, 2, 3]);
///
/// for elt in &mut array {
///     // ...
/// }
/// ```
impl<'a, A: Array> IntoIterator for &'a mut ArrayVec<A> {
    type Item = &'a mut A::Item;
    type IntoIter = slice::IterMut<'a, A::Item>;
    fn into_iter(self) -> Self::IntoIter { self.iter_mut() }
}

/// Iterate the `ArrayVec` with each element by value.
///
/// The vector is consumed by this operation.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// for elt in ArrayVec::from([1, 2, 3]) {
///     // ...
/// }
/// ```
impl<A: Array> IntoIterator for ArrayVec<A> {
    type Item = A::Item;
    type IntoIter = IntoIter<A>;
    fn into_iter(self) -> IntoIter<A> {
        IntoIter { index: Index::from(0), v: self, }
    }
}


/// By-value iterator for `ArrayVec`.
pub struct IntoIter<A: Array> {
    index: A::Index,
    v: ArrayVec<A>,
}

impl<A: Array> Iterator for IntoIter<A> {
    type Item = A::Item;

    fn next(&mut self) -> Option<A::Item> {
        if self.index == self.v.len {
            None
        } else {
            unsafe {
                let index = self.index.to_usize();
                self.index = Index::from(index + 1);
                Some(ptr::read(self.v.get_unchecked_ptr(index)))
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.v.len() - self.index.to_usize();
        (len, Some(len))
    }
}

impl<A: Array> DoubleEndedIterator for IntoIter<A> {
    fn next_back(&mut self) -> Option<A::Item> {
        if self.index == self.v.len {
            None
        } else {
            unsafe {
                let new_len = self.v.len() - 1;
                self.v.set_len(new_len);
                Some(ptr::read(self.v.get_unchecked_ptr(new_len)))
            }
        }
    }
}

impl<A: Array> ExactSizeIterator for IntoIter<A> { }

impl<A: Array> Drop for IntoIter<A> {
    fn drop(&mut self) {
        // panic safety: Set length to 0 before dropping elements.
        let index = self.index.to_usize();
        let len = self.v.len();
        unsafe {
            self.v.set_len(0);
            let elements = slice::from_raw_parts_mut(
                self.v.get_unchecked_ptr(index),
                len - index);
            ptr::drop_in_place(elements);
        }
    }
}

impl<A: Array> Clone for IntoIter<A>
where
    A::Item: Clone,
{
    fn clone(&self) -> IntoIter<A> {
        self.v[self.index.to_usize()..]
            .iter()
            .cloned()
            .collect::<ArrayVec<A>>()
            .into_iter()
    }
}

impl<A: Array> fmt::Debug for IntoIter<A>
where
    A::Item: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_list()
            .entries(&self.v[self.index.to_usize()..])
            .finish()
    }
}

/// A draining iterator for `ArrayVec`.
pub struct Drain<'a, A> 
    where A: Array,
          A::Item: 'a,
{
    /// Index of tail to preserve
    tail_start: usize,
    /// Length of tail
    tail_len: usize,
    /// Current remaining range to remove
    iter: slice::Iter<'a, A::Item>,
    vec: *mut ArrayVec<A>,
}

unsafe impl<'a, A: Array + Sync> Sync for Drain<'a, A> {}
unsafe impl<'a, A: Array + Send> Send for Drain<'a, A> {}

impl<'a, A: Array> Iterator for Drain<'a, A>
    where A::Item: 'a,
{
    type Item = A::Item;

    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().map(|elt|
            unsafe {
                ptr::read(elt as *const _)
            }
        )
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<'a, A: Array> DoubleEndedIterator for Drain<'a, A>
    where A::Item: 'a,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        self.iter.next_back().map(|elt|
            unsafe {
                ptr::read(elt as *const _)
            }
        )
    }
}

impl<'a, A: Array> ExactSizeIterator for Drain<'a, A> where A::Item: 'a {}

impl<'a, A: Array> Drop for Drain<'a, A> 
    where A::Item: 'a
{
    fn drop(&mut self) {
        // len is currently 0 so panicking while dropping will not cause a double drop.

        // exhaust self first
        while let Some(_) = self.next() { }

        if self.tail_len > 0 {
            unsafe {
                let source_vec = &mut *self.vec;
                // memmove back untouched tail, update to new length
                let start = source_vec.len();
                let tail = self.tail_start;
                let src = source_vec.as_ptr().add(tail);
                let dst = source_vec.as_mut_ptr().add(start);
                ptr::copy(src, dst, self.tail_len);
                source_vec.set_len(start + self.tail_len);
            }
        }
    }
}

struct ScopeExitGuard<T, Data, F>
    where F: FnMut(&Data, &mut T)
{
    value: T,
    data: Data,
    f: F,
}

impl<T, Data, F> Drop for ScopeExitGuard<T, Data, F>
    where F: FnMut(&Data, &mut T)
{
    fn drop(&mut self) {
        (self.f)(&self.data, &mut self.value)
    }
}



/// Extend the `ArrayVec` with an iterator.
/// 
/// Does not extract more items than there is space for. No error
/// occurs if there are more iterator elements.
impl<A: Array> Extend<A::Item> for ArrayVec<A> {
    fn extend<T: IntoIterator<Item=A::Item>>(&mut self, iter: T) {
        let take = self.capacity() - self.len();
        unsafe {
            let len = self.len();
            let mut ptr = raw_ptr_add(self.as_mut_ptr(), len);
            let end_ptr = raw_ptr_add(ptr, take);
            // Keep the length in a separate variable, write it back on scope
            // exit. To help the compiler with alias analysis and stuff.
            // We update the length to handle panic in the iteration of the
            // user's iterator, without dropping any elements on the floor.
            let mut guard = ScopeExitGuard {
                value: &mut self.len,
                data: len,
                f: move |&len, self_len| {
                    **self_len = Index::from(len);
                }
            };
            let mut iter = iter.into_iter();
            loop {
                if ptr == end_ptr { break; }
                if let Some(elt) = iter.next() {
                    raw_ptr_write(ptr, elt);
                    ptr = raw_ptr_add(ptr, 1);
                    guard.data += 1;
                } else {
                    break;
                }
            }
        }
    }
}

/// Rawptr add but uses arithmetic distance for ZST
unsafe fn raw_ptr_add<T>(ptr: *mut T, offset: usize) -> *mut T {
    if mem::size_of::<T>() == 0 {
        // Special case for ZST
        (ptr as usize).wrapping_add(offset) as _
    } else {
        ptr.add(offset)
    }
}

unsafe fn raw_ptr_write<T>(ptr: *mut T, value: T) {
    if mem::size_of::<T>() == 0 {
        /* nothing */
    } else {
        ptr::write(ptr, value)
    }
}

/// Create an `ArrayVec` from an iterator.
/// 
/// Does not extract more items than there is space for. No error
/// occurs if there are more iterator elements.
impl<A: Array> iter::FromIterator<A::Item> for ArrayVec<A> {
    fn from_iter<T: IntoIterator<Item=A::Item>>(iter: T) -> Self {
        let mut array = ArrayVec::new();
        array.extend(iter);
        array
    }
}

impl<A: Array> Clone for ArrayVec<A>
    where A::Item: Clone
{
    fn clone(&self) -> Self {
        self.iter().cloned().collect()
    }

    fn clone_from(&mut self, rhs: &Self) {
        // recursive case for the common prefix
        let prefix = cmp::min(self.len(), rhs.len());
        self[..prefix].clone_from_slice(&rhs[..prefix]);

        if prefix < self.len() {
            // rhs was shorter
            for _ in 0..self.len() - prefix {
                self.pop();
            }
        } else {
            let rhs_elems = rhs[self.len()..].iter().cloned();
            self.extend(rhs_elems);
        }
    }
}

impl<A: Array> Hash for ArrayVec<A>
    where A::Item: Hash
{
    fn hash<H: Hasher>(&self, state: &mut H) {
        Hash::hash(&**self, state)
    }
}

impl<A: Array> PartialEq for ArrayVec<A>
    where A::Item: PartialEq
{
    fn eq(&self, other: &Self) -> bool {
        **self == **other
    }
}

impl<A: Array> PartialEq<[A::Item]> for ArrayVec<A>
    where A::Item: PartialEq
{
    fn eq(&self, other: &[A::Item]) -> bool {
        **self == *other
    }
}

impl<A: Array> Eq for ArrayVec<A> where A::Item: Eq { }

impl<A: Array> Borrow<[A::Item]> for ArrayVec<A> {
    fn borrow(&self) -> &[A::Item] { self }
}

impl<A: Array> BorrowMut<[A::Item]> for ArrayVec<A> {
    fn borrow_mut(&mut self) -> &mut [A::Item] { self }
}

impl<A: Array> AsRef<[A::Item]> for ArrayVec<A> {
    fn as_ref(&self) -> &[A::Item] { self }
}

impl<A: Array> AsMut<[A::Item]> for ArrayVec<A> {
    fn as_mut(&mut self) -> &mut [A::Item] { self }
}

impl<A: Array> fmt::Debug for ArrayVec<A> where A::Item: fmt::Debug {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) }
}

impl<A: Array> Default for ArrayVec<A> {
    /// Return an empty array
    fn default() -> ArrayVec<A> {
        ArrayVec::new()
    }
}

impl<A: Array> PartialOrd for ArrayVec<A> where A::Item: PartialOrd {
    fn partial_cmp(&self, other: &ArrayVec<A>) -> Option<cmp::Ordering> {
        (**self).partial_cmp(other)
    }

    fn lt(&self, other: &Self) -> bool {
        (**self).lt(other)
    }

    fn le(&self, other: &Self) -> bool {
        (**self).le(other)
    }

    fn ge(&self, other: &Self) -> bool {
        (**self).ge(other)
    }

    fn gt(&self, other: &Self) -> bool {
        (**self).gt(other)
    }
}

impl<A: Array> Ord for ArrayVec<A> where A::Item: Ord {
    fn cmp(&self, other: &ArrayVec<A>) -> cmp::Ordering {
        (**self).cmp(other)
    }
}

#[cfg(feature="std")]
/// `Write` appends written data to the end of the vector.
///
/// Requires `features="std"`.
impl<A: Array<Item=u8>> io::Write for ArrayVec<A> {
    fn write(&mut self, data: &[u8]) -> io::Result<usize> {
        let len = cmp::min(self.remaining_capacity(), data.len());
        let _result = self.try_extend_from_slice(&data[..len]);
        debug_assert!(_result.is_ok());
        Ok(len)
    }
    fn flush(&mut self) -> io::Result<()> { Ok(()) }
}

#[cfg(feature="serde")]
/// Requires crate feature `"serde"`
impl<T: Serialize, A: Array<Item=T>> Serialize for ArrayVec<A> {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where S: Serializer
    {
        serializer.collect_seq(self)
    }
}

#[cfg(feature="serde")]
/// Requires crate feature `"serde"`
impl<'de, T: Deserialize<'de>, A: Array<Item=T>> Deserialize<'de> for ArrayVec<A> {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where D: Deserializer<'de>
    {
        use serde::de::{Visitor, SeqAccess, Error};
        use std::marker::PhantomData;

        struct ArrayVecVisitor<'de, T: Deserialize<'de>, A: Array<Item=T>>(PhantomData<(&'de (), T, A)>);

        impl<'de, T: Deserialize<'de>, A: Array<Item=T>> Visitor<'de> for ArrayVecVisitor<'de, T, A> {
            type Value = ArrayVec<A>;

            fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
                write!(formatter, "an array with no more than {} items", A::CAPACITY)
            }

            fn visit_seq<SA>(self, mut seq: SA) -> Result<Self::Value, SA::Error>
                where SA: SeqAccess<'de>,
            {
                let mut values = ArrayVec::<A>::new();

                while let Some(value) = seq.next_element()? {
                    if let Err(_) = values.try_push(value) {
                        return Err(SA::Error::invalid_length(A::CAPACITY + 1, &self));
                    }
                }

                Ok(values)
            }
        }

        deserializer.deserialize_seq(ArrayVecVisitor::<T, A>(PhantomData))
    }
}