1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
//! **arrayvec** provides the types `ArrayVec` and `ArrayString`: 
//! array-backed vector and string types, which store their contents inline.
//!
//! The **arrayvec** crate has the following cargo feature flags:
//!
//! - `std`
//!   - Optional, enabled by default
//!   - Requires Rust 1.6 *to disable*
//!   - Use libstd
//!
//! - `use_union`
//!   - Optional
//!   - Requires Rust nightly channel
//!   - Use the unstable feature untagged unions for the internal implementation,
//!     which has reduced space overhead
//!
//! - `use_generic_array`
//!   - Optional
//!   - Requires Rust stable channel
//!   - Depend on generic-array and allow using it just like a fixed
//!     size array for ArrayVec storage.
#![doc(html_root_url="https://docs.rs/arrayvec/0.3/")]
#![cfg_attr(not(feature="std"), no_std)]
extern crate odds;
extern crate nodrop;

#[cfg(feature = "use_generic_array")]
extern crate generic_array;

#[cfg(not(feature="std"))]
extern crate core as std;

use std::cmp;
use std::iter;
use std::mem;
use std::ptr;
use std::ops::{
    Deref,
    DerefMut,
};
use std::slice;

// extra traits
use std::borrow::{Borrow, BorrowMut};
use std::hash::{Hash, Hasher};
use std::fmt;

#[cfg(feature="std")]
use std::io;
#[cfg(feature="std")]
use std::error::Error;
#[cfg(feature="std")]
use std::any::Any; // core but unused

use nodrop::NoDrop;

mod array;
mod array_string;

pub use array::Array;
pub use odds::IndexRange as RangeArgument;
use array::Index;
pub use array_string::ArrayString;


unsafe fn new_array<A: Array>() -> A {
    // Note: Returning an uninitialized value here only works
    // if we can be sure the data is never used. The nullable pointer
    // inside enum optimization conflicts with this this for example,
    // so we need to be extra careful. See `NoDrop` enum.
    mem::uninitialized()
}

/// A vector with a fixed capacity.
///
/// The `ArrayVec` is a vector backed by a fixed size array. It keeps track of
/// the number of initialized elements.
///
/// The vector is a contiguous value that you can store directly on the stack
/// if needed.
///
/// It offers a simple API but also dereferences to a slice, so
/// that the full slice API is available.
///
/// ArrayVec can be converted into a by value iterator.
pub struct ArrayVec<A: Array> {
    xs: NoDrop<A>,
    len: A::Index,
}

impl<A: Array> Drop for ArrayVec<A> {
    fn drop(&mut self) {
        self.clear();

        // NoDrop inhibits array's drop
        // panic safety: NoDrop::drop will trigger on panic, so the inner
        // array will not drop even after panic.
    }
}

impl<A: Array> ArrayVec<A> {
    /// Create a new empty `ArrayVec`.
    ///
    /// Capacity is inferred from the type parameter.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 16]>::new();
    /// array.push(1);
    /// array.push(2);
    /// assert_eq!(&array[..], &[1, 2]);
    /// assert_eq!(array.capacity(), 16);
    /// ```
    pub fn new() -> ArrayVec<A> {
        unsafe {
            ArrayVec { xs: NoDrop::new(new_array()), len: Index::from(0) }
        }
    }

    /// Return the number of elements in the `ArrayVec`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3]);
    /// array.pop();
    /// assert_eq!(array.len(), 2);
    /// ```
    #[inline]
    pub fn len(&self) -> usize { self.len.to_usize() }

    /// Return the capacity of the `ArrayVec`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let array = ArrayVec::from([1, 2, 3]);
    /// assert_eq!(array.capacity(), 3);
    /// ```
    #[inline]
    pub fn capacity(&self) -> usize { A::capacity() }

    /// Return if the `ArrayVec` is completely filled.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 1]>::new();
    /// assert!(!array.is_full());
    /// array.push(1);
    /// assert!(array.is_full());
    /// ```
    pub fn is_full(&self) -> bool { self.len() == self.capacity() }

    /// Push `element` to the end of the vector.
    ///
    /// Return `None` if the push succeeds, or and return `Some(` *element* `)`
    /// if the vector is full.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 2]>::new();
    ///
    /// array.push(1);
    /// array.push(2);
    /// let overflow = array.push(3);
    ///
    /// assert_eq!(&array[..], &[1, 2]);
    /// assert_eq!(overflow, Some(3));
    /// ```
    pub fn push(&mut self, element: A::Item) -> Option<A::Item> {
        if self.len() < A::capacity() {
            let len = self.len();
            unsafe {
                ptr::write(self.get_unchecked_mut(len), element);
                self.set_len(len + 1);
            }
            None
        } else {
            Some(element)
        }
    }

    /// Insert `element` in position `index`.
    ///
    /// Shift up all elements after `index`. If any is pushed out, it is returned.
    ///
    /// Return `None` if no element is shifted out.
    ///
    /// `index` must be <= `self.len()` and < `self.capacity()`. Note that any
    /// out of bounds index insert results in the element being "shifted out"
    /// and returned directly.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 2]>::new();
    ///
    /// assert_eq!(array.insert(0, "x"), None);
    /// assert_eq!(array.insert(0, "y"), None);
    /// assert_eq!(array.insert(0, "z"), Some("x"));
    /// assert_eq!(array.insert(1, "w"), Some("y"));
    /// assert_eq!(&array[..], &["z", "w"]);
    ///
    /// ```
    pub fn insert(&mut self, index: usize, element: A::Item) -> Option<A::Item> {
        if index > self.len() || index == self.capacity() {
            return Some(element);
        }
        let mut ret = None;
        if self.len() == self.capacity() {
            ret = self.pop();
        }
        let len = self.len();

        // follows is just like Vec<T>
        unsafe { // infallible
            // The spot to put the new value
            {
                let p = self.get_unchecked_mut(index) as *mut _;
                // Shift everything over to make space. (Duplicating the
                // `index`th element into two consecutive places.)
                ptr::copy(p, p.offset(1), len - index);
                // Write it in, overwriting the first copy of the `index`th
                // element.
                ptr::write(p, element);
            }
            self.set_len(len + 1);
        }
        ret
    }

    /// Remove the last element in the vector.
    ///
    /// Return `Some(` *element* `)` if the vector is non-empty, else `None`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::<[_; 2]>::new();
    ///
    /// array.push(1);
    ///
    /// assert_eq!(array.pop(), Some(1));
    /// assert_eq!(array.pop(), None);
    /// ```
    pub fn pop(&mut self) -> Option<A::Item> {
        if self.len() == 0 {
            return None
        }
        unsafe {
            let new_len = self.len() - 1;
            self.set_len(new_len);
            Some(ptr::read(self.get_unchecked_mut(new_len)))
        }
    }

    /// Remove the element at `index` and swap the last element into its place.
    ///
    /// This operation is O(1).
    ///
    /// Return `Some(` *element* `)` if the index is in bounds, else `None`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3]);
    ///
    /// assert_eq!(array.swap_remove(0), Some(1));
    /// assert_eq!(&array[..], &[3, 2]);
    ///
    /// assert_eq!(array.swap_remove(10), None);
    /// ```
    pub fn swap_remove(&mut self, index: usize) -> Option<A::Item> {
        let len = self.len();
        if index >= len {
            return None
        }
        self.swap(index, len - 1);
        self.pop()
    }

    /// Remove the element at `index` and shift down the following elements.
    ///
    /// Return `Some(` *element* `)` if the index is in bounds, else `None`.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3]);
    ///
    /// assert_eq!(array.remove(0), Some(1));
    /// assert_eq!(&array[..], &[2, 3]);
    ///
    /// assert_eq!(array.remove(10), None);
    /// ```
    pub fn remove(&mut self, index: usize) -> Option<A::Item> {
        if index >= self.len() {
            None
        } else {
            self.drain(index..index + 1).next()
        }
    }

    /// Remove all elements in the vector.
    pub fn clear(&mut self) {
        while let Some(_) = self.pop() { }
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` such that `f(&mut e)` returns false.
    /// This method operates in place and preserves the order of the retained
    /// elements.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut array = ArrayVec::from([1, 2, 3, 4]);
    /// array.retain(|x| *x & 1 != 0 );
    /// assert_eq!(&array[..], &[1, 3]);
    /// ```
    pub fn retain<F>(&mut self, mut f: F)
        where F: FnMut(&mut A::Item) -> bool
    {
        let len = self.len();
        let mut del = 0;
        {
            let v = &mut **self;

            for i in 0..len {
                if !f(&mut v[i]) {
                    del += 1;
                } else if del > 0 {
                    v.swap(i - del, i);
                }
            }
        }
        if del > 0 {
            self.drain(len - del..);
        }
    }

    /// Set the vector's length without dropping or moving out elements
    ///
    /// May panic if `length` is greater than the capacity.
    ///
    /// This function is `unsafe` because it changes the notion of the
    /// number of “valid” elements in the vector. Use with care.
    #[inline]
    pub unsafe fn set_len(&mut self, length: usize) {
        debug_assert!(length <= self.capacity());
        self.len = Index::from(length);
    }


    /// Create a draining iterator that removes the specified range in the vector
    /// and yields the removed items from start to end. The element range is
    /// removed even if the iterator is not consumed until the end.
    ///
    /// Note: It is unspecified how many elements are removed from the vector,
    /// if the `Drain` value is leaked.
    ///
    /// **Panics** if the starting point is greater than the end point or if
    /// the end point is greater than the length of the vector.
    ///
    /// ```
    /// use arrayvec::ArrayVec;
    ///
    /// let mut v = ArrayVec::from([1, 2, 3]);
    /// let u: Vec<_> = v.drain(0..2).collect();
    /// assert_eq!(&v[..], &[3]);
    /// assert_eq!(&u[..], &[1, 2]);
    /// ```
    pub fn drain<R: RangeArgument>(&mut self, range: R) -> Drain<A> {
        // Memory safety
        //
        // When the Drain is first created, it shortens the length of
        // the source vector to make sure no uninitalized or moved-from elements
        // are accessible at all if the Drain's destructor never gets to run.
        //
        // Drain will ptr::read out the values to remove.
        // When finished, remaining tail of the vec is copied back to cover
        // the hole, and the vector length is restored to the new length.
        //
        let len = self.len();
        let start = range.start().unwrap_or(0);
        let end = range.end().unwrap_or(len);
        // bounds check happens here
        let range_slice: *const _ = &self[start..end];

        unsafe {
            // set self.vec length's to start, to be safe in case Drain is leaked
            self.set_len(start);
            Drain {
                tail_start: end,
                tail_len: len - end,
                iter: (*range_slice).iter(),
                vec: self as *mut _,
            }
        }
    }

    /// Return the inner fixed size array, if it is full to its capacity.
    ///
    /// Return an `Ok` value with the array if length equals capacity,
    /// return an `Err` with self otherwise.
    ///
    /// `Note:` This function may incur unproportionally large overhead
    /// to move the array out, its performance is not optimal.
    pub fn into_inner(self) -> Result<A, Self> {
        if self.len() < self.capacity() {
            Err(self)
        } else {
            unsafe {
                let array = ptr::read(&*self.xs);
                mem::forget(self);
                Ok(array)
            }
        }
    }

    /// Dispose of `self` without the overwriting that is needed in Drop.
    pub fn dispose(mut self) {
        self.clear();
        mem::forget(self);
    }

    /// Return a slice containing all elements of the vector.
    pub fn as_slice(&self) -> &[A::Item] {
        self
    }

    /// Return a mutable slice containing all elements of the vector.
    pub fn as_mut_slice(&mut self) -> &mut [A::Item] {
        self
    }
}

impl<A: Array> Deref for ArrayVec<A> {
    type Target = [A::Item];
    #[inline]
    fn deref(&self) -> &[A::Item] {
        unsafe {
            slice::from_raw_parts(self.xs.as_ptr(), self.len())
        }
    }
}

impl<A: Array> DerefMut for ArrayVec<A> {
    #[inline]
    fn deref_mut(&mut self) -> &mut [A::Item] {
        let len = self.len();
        unsafe {
            slice::from_raw_parts_mut(self.xs.as_mut_ptr(), len)
        }
    }
}

/// Create an `ArrayVec` from an array.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1, 2, 3]);
/// assert_eq!(array.len(), 3);
/// assert_eq!(array.capacity(), 3);
/// ```
impl<A: Array> From<A> for ArrayVec<A> {
    fn from(array: A) -> Self {
        ArrayVec { xs: NoDrop::new(array), len: Index::from(A::capacity()) }
    }
}


/// Iterate the `ArrayVec` with references to each element.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let array = ArrayVec::from([1, 2, 3]);
///
/// for elt in &array {
///     // ...
/// }
/// ```
impl<'a, A: Array> IntoIterator for &'a ArrayVec<A> {
    type Item = &'a A::Item;
    type IntoIter = slice::Iter<'a, A::Item>;
    fn into_iter(self) -> Self::IntoIter { self.iter() }
}

/// Iterate the `ArrayVec` with mutable references to each element.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// let mut array = ArrayVec::from([1, 2, 3]);
///
/// for elt in &mut array {
///     // ...
/// }
/// ```
impl<'a, A: Array> IntoIterator for &'a mut ArrayVec<A> {
    type Item = &'a mut A::Item;
    type IntoIter = slice::IterMut<'a, A::Item>;
    fn into_iter(self) -> Self::IntoIter { self.iter_mut() }
}

/// Iterate the `ArrayVec` with each element by value.
///
/// The vector is consumed by this operation.
///
/// ```
/// use arrayvec::ArrayVec;
///
/// for elt in ArrayVec::from([1, 2, 3]) {
///     // ...
/// }
/// ```
impl<A: Array> IntoIterator for ArrayVec<A> {
    type Item = A::Item;
    type IntoIter = IntoIter<A>;
    fn into_iter(self) -> IntoIter<A> {
        IntoIter { index: Index::from(0), v: self, }
    }
}


/// By-value iterator for `ArrayVec`.
pub struct IntoIter<A: Array> {
    index: A::Index,
    v: ArrayVec<A>,
}

impl<A: Array> Iterator for IntoIter<A> {
    type Item = A::Item;

    #[inline]
    fn next(&mut self) -> Option<A::Item> {
        if self.index == self.v.len {
            None
        } else {
            unsafe {
                let index = self.index.to_usize();
                self.index = Index::from(index + 1);
                Some(ptr::read(self.v.get_unchecked_mut(index)))
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.v.len() - self.index.to_usize();
        (len, Some(len))
    }
}

impl<A: Array> DoubleEndedIterator for IntoIter<A> {
    #[inline]
    fn next_back(&mut self) -> Option<A::Item> {
        if self.index == self.v.len {
            None
        } else {
            unsafe {
                let new_len = self.v.len() - 1;
                self.v.set_len(new_len);
                Some(ptr::read(self.v.get_unchecked_mut(new_len)))
            }
        }
    }
}

impl<A: Array> ExactSizeIterator for IntoIter<A> { }

impl<A: Array> Drop for IntoIter<A> {
    fn drop(&mut self) {
        // panic safety: Set length to 0 before dropping elements.
        let index = self.index.to_usize();
        let len = self.v.len();
        unsafe {
            self.v.set_len(0);
            let elements = slice::from_raw_parts(self.v.get_unchecked_mut(index),
                                                 len - index);
            for elt in elements {
                ptr::read(elt);
            }
        }
    }
}

/// A draining iterator for `ArrayVec`.
pub struct Drain<'a, A> 
    where A: Array,
          A::Item: 'a,
{
    /// Index of tail to preserve
    tail_start: usize,
    /// Length of tail
    tail_len: usize,
    /// Current remaining range to remove
    iter: slice::Iter<'a, A::Item>,
    vec: *mut ArrayVec<A>,
}

unsafe impl<'a, A: Array + Sync> Sync for Drain<'a, A> {}
unsafe impl<'a, A: Array + Send> Send for Drain<'a, A> {}

impl<'a, A: Array> Iterator for Drain<'a, A>
    where A::Item: 'a,
{
    type Item = A::Item;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().map(|elt|
            unsafe {
                ptr::read(elt as *const _)
            }
        )
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<'a, A: Array> DoubleEndedIterator for Drain<'a, A>
    where A::Item: 'a,
{
    #[inline]
    fn next_back(&mut self) -> Option<Self::Item> {
        self.iter.next_back().map(|elt|
            unsafe {
                ptr::read(elt as *const _)
            }
        )
    }
}

impl<'a, A: Array> ExactSizeIterator for Drain<'a, A> where A::Item: 'a {}

impl<'a, A: Array> Drop for Drain<'a, A> 
    where A::Item: 'a
{
    fn drop(&mut self) {
        // len is currently 0 so panicking while dropping will not cause a double drop.

        // exhaust self first
        while let Some(_) = self.next() { }

        if self.tail_len > 0 {
            unsafe {
                let source_vec = &mut *self.vec;
                // memmove back untouched tail, update to new length
                let start = source_vec.len();
                let tail = self.tail_start;
                let src = source_vec.as_ptr().offset(tail as isize);
                let dst = source_vec.as_mut_ptr().offset(start as isize);
                ptr::copy(src, dst, self.tail_len);
                source_vec.set_len(start + self.tail_len);
            }
        }
    }
}




/// Extend the `ArrayVec` with an iterator.
/// 
/// Does not extract more items than there is space for. No error
/// occurs if there are more iterator elements.
impl<A: Array> Extend<A::Item> for ArrayVec<A> {
    fn extend<T: IntoIterator<Item=A::Item>>(&mut self, iter: T) {
        let take = self.capacity() - self.len();
        for elt in iter.into_iter().take(take) {
            self.push(elt);
        }
    }
}

/// Create an `ArrayVec` from an iterator.
/// 
/// Does not extract more items than there is space for. No error
/// occurs if there are more iterator elements.
impl<A: Array> iter::FromIterator<A::Item> for ArrayVec<A> {
    fn from_iter<T: IntoIterator<Item=A::Item>>(iter: T) -> Self {
        let mut array = ArrayVec::new();
        array.extend(iter);
        array
    }
}

impl<A: Array> Clone for ArrayVec<A>
    where A::Item: Clone
{
    fn clone(&self) -> Self {
        self.iter().cloned().collect()
    }

    fn clone_from(&mut self, rhs: &Self) {
        // recursive case for the common prefix
        let prefix = cmp::min(self.len(), rhs.len());
        {
            let a = &mut self[..prefix];
            let b = &rhs[..prefix];
            for i in 0..prefix {
                a[i].clone_from(&b[i]);
            }
        }
        if prefix < self.len() {
            // rhs was shorter
            for _ in 0..self.len() - prefix {
                self.pop();
            }
        } else {
            for elt in &rhs[self.len()..] {
                self.push(elt.clone());
            }
        }
    }
}

impl<A: Array> Hash for ArrayVec<A>
    where A::Item: Hash
{
    fn hash<H: Hasher>(&self, state: &mut H) {
        Hash::hash(&**self, state)
    }
}

impl<A: Array> PartialEq for ArrayVec<A>
    where A::Item: PartialEq
{
    fn eq(&self, other: &Self) -> bool {
        **self == **other
    }
}

impl<A: Array> PartialEq<[A::Item]> for ArrayVec<A>
    where A::Item: PartialEq
{
    fn eq(&self, other: &[A::Item]) -> bool {
        **self == *other
    }
}

impl<A: Array> Eq for ArrayVec<A> where A::Item: Eq { }

impl<A: Array> Borrow<[A::Item]> for ArrayVec<A> {
    fn borrow(&self) -> &[A::Item] { self }
}

impl<A: Array> BorrowMut<[A::Item]> for ArrayVec<A> {
    fn borrow_mut(&mut self) -> &mut [A::Item] { self }
}

impl<A: Array> AsRef<[A::Item]> for ArrayVec<A> {
    fn as_ref(&self) -> &[A::Item] { self }
}

impl<A: Array> AsMut<[A::Item]> for ArrayVec<A> {
    fn as_mut(&mut self) -> &mut [A::Item] { self }
}

impl<A: Array> fmt::Debug for ArrayVec<A> where A::Item: fmt::Debug {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) }
}

impl<A: Array> Default for ArrayVec<A> {
    fn default() -> ArrayVec<A> {
        ArrayVec::new()
    }
}

impl<A: Array> PartialOrd for ArrayVec<A> where A::Item: PartialOrd {
    #[inline]
    fn partial_cmp(&self, other: &ArrayVec<A>) -> Option<cmp::Ordering> {
        (**self).partial_cmp(other)
    }

    #[inline]
    fn lt(&self, other: &Self) -> bool {
        (**self).lt(other)
    }

    #[inline]
    fn le(&self, other: &Self) -> bool {
        (**self).le(other)
    }

    #[inline]
    fn ge(&self, other: &Self) -> bool {
        (**self).ge(other)
    }

    #[inline]
    fn gt(&self, other: &Self) -> bool {
        (**self).gt(other)
    }
}

impl<A: Array> Ord for ArrayVec<A> where A::Item: Ord {
    fn cmp(&self, other: &ArrayVec<A>) -> cmp::Ordering {
        (**self).cmp(other)
    }
}

#[cfg(feature="std")]
/// `Write` appends written data to the end of the vector.
///
/// Requires `features="std"`.
impl<A: Array<Item=u8>> io::Write for ArrayVec<A> {
    fn write(&mut self, data: &[u8]) -> io::Result<usize> {
        unsafe {
            let len = self.len();
            let mut tail = slice::from_raw_parts_mut(self.get_unchecked_mut(len),
                                                     A::capacity() - len);
            let result = tail.write(data);
            if let Ok(written) = result {
                self.set_len(len + written);
            }
            result
        }
    }
    fn flush(&mut self) -> io::Result<()> { Ok(()) }
}

/// Error value indicating insufficient capacity
#[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)]
pub struct CapacityError<T = ()> {
    element: T,
}

impl<T> CapacityError<T> {
    fn new(element: T) -> CapacityError<T> {
        CapacityError {
            element: element,
        }
    }

    /// Extract the overflowing element
    pub fn element(self) -> T {
        self.element
    }

    /// Convert into a `CapacityError` that does not carry an element.
    pub fn simplify(self) -> CapacityError {
        CapacityError { element: () }
    }
}

const CAPERROR: &'static str = "insufficient capacity";

#[cfg(feature="std")]
/// Requires `features="std"`.
impl<T: Any> Error for CapacityError<T> {
    fn description(&self) -> &str {
        CAPERROR
    }
}

impl<T> fmt::Display for CapacityError<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", CAPERROR)
    }
}

impl<T> fmt::Debug for CapacityError<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}: {}", "CapacityError", CAPERROR)
    }
}