1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
use super::{is_left_child, is_root, left_child, parent, right_child, sibling, tree_height};
use crate::poseidon::field_hasher::FieldHasher;
use ark_crypto_primitives::Error;
use ark_ff::PrimeField;
use ark_std::{
	borrow::ToOwned,
	collections::{BTreeMap, BTreeSet},
	marker::PhantomData,
};

#[derive(Debug)]
pub enum MerkleError {
	InvalidLeaf,
	InvalidPathNodes,
}

impl core::fmt::Display for MerkleError {
	fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
		let msg = match self {
			MerkleError::InvalidLeaf => "Invalid leaf".to_owned(),
			MerkleError::InvalidPathNodes => "Path nodes are not consistent".to_owned(),
		};
		write!(f, "{}", msg)
	}
}

impl ark_std::error::Error for MerkleError {}

// Path
#[derive(Clone)]
pub struct Path<F: PrimeField, H: FieldHasher<F>, const N: usize> {
	pub path: [(F, F); N],
	_marker: PhantomData<H>,
}

impl<F: PrimeField, H: FieldHasher<F>, const N: usize> Path<F, H, N> {
	/// Takes in an expected `root_hash` and leaf-level data (i.e. hashes of
	/// secrets) for a leaf and checks that the leaf belongs to a tree having
	/// the expected hash.
	pub fn check_membership(&self, root_hash: &F, leaf: &F, hasher: &H) -> Result<bool, Error> {
		let root = self.calculate_root(leaf, hasher)?;
		Ok(root == *root_hash)
	}

	/// Assumes leaf contains leaf-level data, i.e. hashes of secrets
	/// stored on leaf-level.
	pub fn calculate_root(&self, leaf: &F, hasher: &H) -> Result<F, Error> {
		if *leaf != self.path[0].0 && *leaf != self.path[0].1 {
			return Err(MerkleError::InvalidLeaf.into());
		}

		let mut prev = *leaf;
		// Check levels between leaf level and root
		for &(ref left_hash, ref right_hash) in &self.path {
			if &prev != left_hash && &prev != right_hash {
				return Err(MerkleError::InvalidPathNodes.into());
			}
			prev = hasher.hash_two(left_hash, right_hash)?;
		}

		Ok(prev)
	}

	/// Given leaf data determine what the index of this leaf must be
	/// in the Merkle tree it belongs to.  Before doing so check that the leaf
	/// does indeed belong to a tree with the given `root_hash`
	pub fn get_index(&self, root_hash: &F, leaf: &F, hasher: &H) -> Result<F, Error> {
		if !self.check_membership(root_hash, leaf, hasher)? {
			return Err(MerkleError::InvalidLeaf.into());
		}

		let mut prev = *leaf;
		let mut index = F::zero();
		let mut twopower = F::one();
		// Check levels between leaf level and root
		for &(ref left_hash, ref right_hash) in &self.path {
			// Check if the previous hash is for a left node or right node
			if &prev != left_hash {
				index += twopower;
			}
			twopower = twopower + twopower;
			prev = hasher.hash_two(left_hash, right_hash)?;
		}

		Ok(index)
	}
}

// Merkle sparse tree
// We wanted the "default" or "empty" leaf to be specified as a constant in
// the struct's trait bounds but arrays are not allowed as constants.  Instead
// all constructor functions take in a default/empty leaf argument.
pub struct SparseMerkleTree<F: PrimeField, H: FieldHasher<F>, const N: usize> {
	/// data of the tree
	pub tree: BTreeMap<u64, F>,
	empty_hashes: [F; N],
	_marker: PhantomData<H>,
}

impl<F: PrimeField, H: FieldHasher<F>, const N: usize> SparseMerkleTree<F, H, N> {
	/// Takes a collection of leaf data (hashes of secrets), inserts
	/// these hashes at leaf level, and propagates the changes up the tree to
	/// the root.
	pub fn insert_batch(&mut self, leaves: &BTreeMap<u32, F>, hasher: &H) -> Result<(), Error> {
		let last_level_index: u64 = (1u64 << N) - 1;

		let mut level_idxs: BTreeSet<u64> = BTreeSet::new();
		for (i, leaf) in leaves {
			let true_index = last_level_index + (*i as u64);
			self.tree.insert(true_index, *leaf);
			level_idxs.insert(parent(true_index).unwrap());
		}

		for level in 0..N {
			let mut new_idxs: BTreeSet<u64> = BTreeSet::new();
			for i in level_idxs {
				let left_index = left_child(i);
				let right_index = right_child(i);

				let empty_hash = self.empty_hashes[level].clone();
				let left = self.tree.get(&left_index).unwrap_or(&empty_hash);
				let right = self.tree.get(&right_index).unwrap_or(&empty_hash);
				#[allow(mutable_borrow_reservation_conflict)]
				self.tree.insert(i, hasher.hash_two(left, right)?);

				let parent = match parent(i) {
					Some(i) => i,
					None => break,
				};
				new_idxs.insert(parent);
			}
			level_idxs = new_idxs;
		}

		Ok(())
	}

	pub fn new(leaves: &BTreeMap<u32, F>, hasher: &H, empty_leaf: &[u8]) -> Result<Self, Error> {
		// Ensure the tree can hold this many leaves
		let last_level_size = leaves.len().next_power_of_two();
		let tree_size = 2 * last_level_size - 1;
		let tree_height = tree_height(tree_size as u64);
		assert!(tree_height <= N as u32);

		// Initialize the merkle tree
		let tree: BTreeMap<u64, F> = BTreeMap::new();
		let empty_hashes = gen_empty_hashes(hasher, empty_leaf)?;

		let mut smt = SparseMerkleTree::<F, H, N> {
			tree,
			empty_hashes,
			_marker: PhantomData,
		};
		smt.insert_batch(leaves, hasher)?;

		Ok(smt)
	}

	pub fn new_sequential(leaves: &[F], hasher: &H, empty_leaf: &[u8]) -> Result<Self, Error> {
		let pairs: BTreeMap<u32, F> = leaves
			.iter()
			.enumerate()
			.map(|(i, l)| (i as u32, l.clone()))
			.collect();
		let smt = Self::new(&pairs, hasher, empty_leaf)?;

		Ok(smt)
	}

	pub fn root(&self) -> F {
		self.tree
			.get(&0)
			.cloned()
			.unwrap_or(*self.empty_hashes.last().unwrap())
	}

	/// Give the path leading from the leaf at `index` up to the root.  This is
	/// a "proof" in the sense of "valid path in a Merkle tree", not a ZK
	/// argument.
	pub fn generate_membership_proof(&self, index: u64) -> Path<F, H, N> {
		let mut path = [(F::zero(), F::zero()); N];

		let tree_index = convert_index_to_last_level(index, N);

		// Iterate from the leaf up to the root, storing all intermediate hash values.
		let mut current_node = tree_index;
		let mut level = 0;
		while !is_root(current_node) {
			let sibling_node = sibling(current_node).unwrap();

			let empty_hash = &self.empty_hashes[level];

			let current = self
				.tree
				.get(&current_node)
				.cloned()
				.unwrap_or_else(|| empty_hash.clone());
			let sibling = self
				.tree
				.get(&sibling_node)
				.cloned()
				.unwrap_or_else(|| empty_hash.clone());

			if is_left_child(current_node) {
				path[level] = (current, sibling);
			} else {
				path[level] = (sibling, current);
			}
			current_node = parent(current_node).unwrap();
			level += 1;
		}

		Path {
			path,
			_marker: PhantomData,
		}
	}
}

pub fn gen_empty_hashes<F: PrimeField, H: FieldHasher<F>, const N: usize>(
	hasher: &H,
	default_leaf: &[u8],
) -> Result<[F; N], Error> {
	let mut empty_hashes = [F::zero(); N];

	// let mut empty_hash =
	// hasher.hash(&[F::from_le_bytes_mod_order(default_leaf)])?;
	let mut empty_hash = F::from_le_bytes_mod_order(default_leaf);
	empty_hashes[0] = empty_hash;

	for i in 1..N {
		empty_hash = hasher.hash_two(&empty_hash, &empty_hash)?;
		empty_hashes[i] = empty_hash;
	}

	Ok(empty_hashes)
}

fn convert_index_to_last_level(index: u64, height: usize) -> u64 {
	index + (1u64 << height) - 1
}

#[cfg(test)]
mod test {
	use super::{gen_empty_hashes, SparseMerkleTree};
	use crate::poseidon::field_hasher::{FieldHasher, Poseidon};
	use ark_bls12_381::Fq;
	use ark_ff::{BigInteger, PrimeField, UniformRand};
	use ark_std::{collections::BTreeMap, test_rng};
	use arkworks_utils::utils::{
		common::{setup_params_x5_3, Curve},
		parse_vec,
	};

	type BLSHash = Poseidon<Fq>;

	//helper to change leaves array to BTreeMap and then create SMT
	fn create_merkle_tree<F: PrimeField, H: FieldHasher<F>, const N: usize>(
		hasher: H,
		leaves: &[F],
		default_leaf: &[u8],
	) -> SparseMerkleTree<F, H, N> {
		let pairs: BTreeMap<u32, F> = leaves
			.iter()
			.enumerate()
			.map(|(i, l)| (i as u32, *l))
			.collect();
		let smt = SparseMerkleTree::<F, H, N>::new(&pairs, &hasher, default_leaf).unwrap();

		smt
	}

	#[test]
	fn should_create_tree_poseidon() {
		let rng = &mut test_rng();
		let curve = Curve::Bls381;

		let params = setup_params_x5_3(curve);
		let poseidon = Poseidon::new(params);
		let default_leaf = [0u8; 32];
		let leaves = [Fq::rand(rng), Fq::rand(rng), Fq::rand(rng)];
		const HEIGHT: usize = 3;
		let smt =
			create_merkle_tree::<Fq, BLSHash, HEIGHT>(poseidon.clone(), &leaves, &default_leaf);

		let root = smt.root();

		let empty_hashes =
			gen_empty_hashes::<Fq, BLSHash, HEIGHT>(&poseidon, &default_leaf).unwrap();
		let hash1 = leaves[0];
		let hash2 = leaves[1];
		let hash3 = leaves[2];

		let hash12 = poseidon.hash_two(&hash1, &hash2).unwrap();
		let hash34 = poseidon.hash_two(&hash3, &empty_hashes[0]).unwrap();

		let hash1234 = poseidon.hash_two(&hash12, &hash34).unwrap();
		let calc_root = poseidon.hash_two(&hash1234, &empty_hashes[2]).unwrap();

		assert_eq!(root, calc_root);
	}

	#[test]
	fn should_generate_and_validate_proof_poseidon() {
		let rng = &mut test_rng();
		let curve = Curve::Bls381;

		let params = setup_params_x5_3(curve);
		let poseidon = Poseidon::new(params);
		let default_leaf = [0u8; 32];
		let leaves = [Fq::rand(rng), Fq::rand(rng), Fq::rand(rng)];
		const HEIGHT: usize = 3;
		let smt =
			create_merkle_tree::<Fq, BLSHash, HEIGHT>(poseidon.clone(), &leaves, &default_leaf);

		let proof = smt.generate_membership_proof(0);

		let res = proof
			.check_membership(&smt.root(), &leaves[0], &poseidon)
			.unwrap();
		assert!(res);
	}

	#[test]
	fn should_find_the_index_poseidon() {
		let rng = &mut test_rng();
		let curve = Curve::Bls381;

		let params = setup_params_x5_3(curve);
		let poseidon = Poseidon::new(params);
		let default_leaf = [0u8; 32];
		let leaves = [Fq::rand(rng), Fq::rand(rng), Fq::rand(rng)];
		const HEIGHT: usize = 3;
		let smt =
			create_merkle_tree::<Fq, BLSHash, HEIGHT>(poseidon.clone(), &leaves, &default_leaf);

		let index = 2;

		let proof = smt.generate_membership_proof(index);

		let res = proof
			.get_index(&smt.root(), &leaves[index as usize], &poseidon)
			.unwrap();
		let desired_res = Fq::from(index);

		assert_eq!(res, desired_res);
	}

	// Backwards-compatibility tests:
	use crate::{
		identity::CRH as IdentityCRH,
		merkle_tree::{Config, SparseMerkleTree as OldSparseMerkleTree},
		poseidon::CRH as PoseidonCRH,
	};
	use ark_crypto_primitives::crh::CRH;
	use ark_ff::ToBytes;
	use ark_std::rc::Rc;

	type SMTCRH = PoseidonCRH<Fq>;
	type IdCRH = IdentityCRH<Fq>;

	#[derive(Clone, Debug, Eq, PartialEq)]
	struct SMTConfig;
	impl Config for SMTConfig {
		type H = SMTCRH;
		type LeafH = IdCRH;

		const HEIGHT: u8 = 3;
	}

	// Helper function to create a Merkle tree in the old way:
	fn create_old_merkle_tree<L: Default + ToBytes + Copy, C: Config>(
		inner_params: Rc<<C::H as CRH>::Parameters>,
		leaf_params: Rc<<C::LeafH as CRH>::Parameters>,
		leaves: &[L],
	) -> OldSparseMerkleTree<C> {
		let pairs: BTreeMap<u32, L> = leaves
			.iter()
			.enumerate()
			.map(|(i, l)| (i as u32, *l))
			.collect();
		let smt = OldSparseMerkleTree::<C>::new(inner_params, leaf_params, &pairs).unwrap();

		smt
	}

	#[test]
	fn should_create_trees_with_same_root_poseidon() {
		// Common to both
		let rng = &mut test_rng();
		let curve = Curve::Bls381;

		let params = setup_params_x5_3(curve);

		let leaves = [Fq::rand(rng), Fq::rand(rng), Fq::rand(rng)];

		// Specific to old method
		let inner_params = Rc::new(params.clone());
		let leaf_params = Rc::new(());

		let old_smt = create_old_merkle_tree::<Fq, SMTConfig>(
			inner_params.clone(),
			leaf_params.clone(),
			&leaves.to_vec(),
		);

		let old_root = old_smt.root().inner();

		// Now generate tree in new method

		let poseidon = Poseidon::new(params.clone());
		let default_leaf = [0u8; 0];
		const HEIGHT: usize = 3;

		let smt =
			create_merkle_tree::<Fq, BLSHash, HEIGHT>(poseidon.clone(), &leaves, &default_leaf);

		let root = smt.root();

		assert_eq!(root, old_root);
	}

	use ark_bn254::Fr as Bn254Fr;

	#[test]
	fn compare_with_solidity_empty_hashes() {
		// These are taken from protocol-solidity/contracts/trees/MerkleTreePoseidon.sol
		let solidity_empty_hashes_hex = vec![
			"0x2fe54c60d3acabf3343a35b6eba15db4821b340f76e741e2249685ed4899af6c",
			"0x13e37f2d6cb86c78ccc1788607c2b199788c6bb0a615a21f2e7a8e88384222f8",
			"0x217126fa352c326896e8c2803eec8fd63ad50cf65edfef27a41a9e32dc622765",
			"0x0e28a61a9b3e91007d5a9e3ada18e1b24d6d230c618388ee5df34cacd7397eee",
			"0x27953447a6979839536badc5425ed15fadb0e292e9bc36f92f0aa5cfa5013587",
			"0x194191edbfb91d10f6a7afd315f33095410c7801c47175c2df6dc2cce0e3affc",
			"0x1733dece17d71190516dbaf1927936fa643dc7079fc0cc731de9d6845a47741f",
			"0x267855a7dc75db39d81d17f95d0a7aa572bf5ae19f4db0e84221d2b2ef999219",
			"0x1184e11836b4c36ad8238a340ecc0985eeba665327e33e9b0e3641027c27620d",
			"0x0702ab83a135d7f55350ab1bfaa90babd8fc1d2b3e6a7215381a7b2213d6c5ce",
			"0x2eecc0de814cfd8c57ce882babb2e30d1da56621aef7a47f3291cffeaec26ad7",
			"0x280bc02145c155d5833585b6c7b08501055157dd30ce005319621dc462d33b47",
			"0x045132221d1fa0a7f4aed8acd2cbec1e2189b7732ccb2ec272b9c60f0d5afc5b",
			"0x27f427ccbf58a44b1270abbe4eda6ba53bd6ac4d88cf1e00a13c4371ce71d366",
			"0x1617eaae5064f26e8f8a6493ae92bfded7fde71b65df1ca6d5dcec0df70b2cef",
			"0x20c6b400d0ea1b15435703c31c31ee63ad7ba5c8da66cec2796feacea575abca",
			"0x09589ddb438723f53a8e57bdada7c5f8ed67e8fece3889a73618732965645eec",
			"0x0064b6a738a5ff537db7b220f3394f0ecbd35bfd355c5425dc1166bf3236079b",
			"0x095de56281b1d5055e897c3574ff790d5ee81dbc5df784ad2d67795e557c9e9f",
			"0x11cf2e2887aa21963a6ec14289183efe4d4c60f14ecd3d6fe0beebdf855a9b63",
			"0x2b0f6fc0179fa65b6f73627c0e1e84c7374d2eaec44c9a48f2571393ea77bcbb",
			"0x16fdb637c2abf9c0f988dbf2fd64258c46fb6a273d537b2cf1603ea460b13279",
			"0x21bbd7e944f6124dad4c376df9cc12e7ca66e47dff703ff7cedb1a454edcf0ff",
			"0x2784f8220b1c963e468f590f137baaa1625b3b92a27ad9b6e84eb0d3454d9962",
			"0x16ace1a65b7534142f8cc1aad810b3d6a7a74ca905d9c275cb98ba57e509fc10",
			"0x2328068c6a8c24265124debd8fe10d3f29f0665ea725a65e3638f6192a96a013",
			"0x2ddb991be1f028022411b4c4d2c22043e5e751c120736f00adf54acab1c9ac14",
			"0x0113798410eaeb95056a464f70521eb58377c0155f2fe518a5594d38cc209cc0",
			"0x202d1ae61526f0d0d01ef80fb5d4055a7af45721024c2c24cffd6a3798f54d50",
			"0x23ab323453748129f2765f79615022f5bebd6f4096a796300aab049a60b0f187",
			"0x1f15585f8947e378bcf8bd918716799da909acdb944c57150b1eb4565fda8aa0",
			"0x1eb064b21055ac6a350cf41eb30e4ce2cb19680217df3a243617c2838185ad06",
		];
		let solidity_empty_hashes: Vec<Bn254Fr> = parse_vec(solidity_empty_hashes_hex);

		// Generate again with this module's functions
		let curve = Curve::Bn254;
		let params = setup_params_x5_3::<Bn254Fr>(curve);
		let poseidon = Poseidon::<Bn254Fr>::new(params.clone());

		let default_leaf_hex =
			vec!["0x2fe54c60d3acabf3343a35b6eba15db4821b340f76e741e2249685ed4899af6c"];
		let default_leaf_scalar: Vec<Bn254Fr> = parse_vec(default_leaf_hex);
		let default_leaf_vec = default_leaf_scalar[0].into_repr().to_bytes_le();
		let empty_hashes =
			gen_empty_hashes::<Bn254Fr, _, 32usize>(&poseidon, &default_leaf_vec[..]).unwrap();

		assert_eq!(empty_hashes.to_vec(), solidity_empty_hashes);
	}
}