1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
//! Multilinear polynomial represented in dense evaluation form.

use crate::evaluations::multivariate::multilinear::{swap_bits, MultilinearExtension};
use ark_ff::{Field, Zero};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::{
    fmt,
    fmt::Formatter,
    ops::{Add, AddAssign, Index, Neg, Sub, SubAssign},
    rand::Rng,
    slice::{Iter, IterMut},
    vec::Vec,
};
#[cfg(feature = "parallel")]
use rayon::prelude::*;

/// Stores a multilinear polynomial in dense evaluation form.
#[derive(Clone, PartialEq, Eq, Hash, Default, CanonicalSerialize, CanonicalDeserialize)]
pub struct DenseMultilinearExtension<F: Field> {
    /// The evaluation over {0,1}^`num_vars`
    pub evaluations: Vec<F>,
    /// Number of variables
    pub num_vars: usize,
}

impl<F: Field> DenseMultilinearExtension<F> {
    /// Construct a new polynomial from a list of evaluations where the index
    /// represents a point in {0,1}^`num_vars` in little endian form. For
    /// example, `0b1011` represents `P(1,1,0,1)`
    pub fn from_evaluations_slice(num_vars: usize, evaluations: &[F]) -> Self {
        Self::from_evaluations_vec(num_vars, evaluations.to_vec())
    }

    /// Construct a new polynomial from a list of evaluations where the index
    /// represents a point in {0,1}^`num_vars` in little endian form. For
    /// example, `0b1011` represents `P(1,1,0,1)`
    pub fn from_evaluations_vec(num_vars: usize, evaluations: Vec<F>) -> Self {
        // assert that the number of variables matches the size of evaluations
        assert_eq!(
            evaluations.len(),
            1 << num_vars,
            "The size of evaluations should be 2^num_vars."
        );

        Self {
            num_vars,
            evaluations,
        }
    }
    /// Relabel the point in place by switching `k` scalars from position `a` to
    /// position `b`, and from position `b` to position `a` in vector.
    ///
    /// This function turns `P(x_1,...,x_a,...,x_{a+k - 1},...,x_b,...,x_{b+k - 1},...,x_n)`
    /// to `P(x_1,...,x_b,...,x_{b+k - 1},...,x_a,...,x_{a+k - 1},...,x_n)`
    pub fn relabel_in_place(&mut self, mut a: usize, mut b: usize, k: usize) {
        // enforce order of a and b
        if a > b {
            ark_std::mem::swap(&mut a, &mut b);
        }
        if a == b || k == 0 {
            return;
        }
        assert!(b + k <= self.num_vars, "invalid relabel argument");
        assert!(a + k <= b, "overlapped swap window is not allowed");
        for i in 0..self.evaluations.len() {
            let j = swap_bits(i, a, b, k);
            if i < j {
                self.evaluations.swap(i, j);
            }
        }
    }

    /// Returns an iterator that iterates over the evaluations over {0,1}^`num_vars`
    pub fn iter(&self) -> Iter<'_, F> {
        self.evaluations.iter()
    }

    /// Returns a mutable iterator that iterates over the evaluations over {0,1}^`num_vars`
    pub fn iter_mut(&mut self) -> IterMut<'_, F> {
        self.evaluations.iter_mut()
    }
}

impl<F: Field> MultilinearExtension<F> for DenseMultilinearExtension<F> {
    fn num_vars(&self) -> usize {
        self.num_vars
    }

    fn evaluate(&self, point: &[F]) -> Option<F> {
        if point.len() == self.num_vars {
            Some(self.fix_variables(point)[0])
        } else {
            None
        }
    }

    fn rand<R: Rng>(num_vars: usize, rng: &mut R) -> Self {
        Self::from_evaluations_vec(
            num_vars,
            (0..(1 << num_vars)).map(|_| F::rand(rng)).collect(),
        )
    }

    fn relabel(&self, a: usize, b: usize, k: usize) -> Self {
        let mut copied = self.clone();
        copied.relabel_in_place(a, b, k);
        copied
    }

    fn fix_variables(&self, partial_point: &[F]) -> Self {
        assert!(
            partial_point.len() <= self.num_vars,
            "invalid size of partial point"
        );
        let mut poly = self.evaluations.to_vec();
        let nv = self.num_vars;
        let dim = partial_point.len();
        // evaluate single variable of partial point from left to right
        for i in 1..dim + 1 {
            let r = partial_point[i - 1];
            for b in 0..(1 << (nv - i)) {
                let left = poly[b << 1];
                let right = poly[(b << 1) + 1];
                poly[b] = left + r * (right - left);
            }
        }
        Self::from_evaluations_slice(nv - dim, &poly[..(1 << (nv - dim))])
    }

    fn to_evaluations(&self) -> Vec<F> {
        self.evaluations.to_vec()
    }
}

impl<F: Field> Index<usize> for DenseMultilinearExtension<F> {
    type Output = F;

    /// Returns the evaluation of the polynomial at a point represented by index.
    ///
    /// Index represents a vector in {0,1}^`num_vars` in little endian form. For
    /// example, `0b1011` represents `P(1,1,0,1)`
    ///
    /// For dense multilinear polynomial, `index` takes constant time.
    fn index(&self, index: usize) -> &Self::Output {
        &self.evaluations[index]
    }
}

impl<F: Field> Add for DenseMultilinearExtension<F> {
    type Output = DenseMultilinearExtension<F>;

    fn add(self, other: DenseMultilinearExtension<F>) -> Self {
        &self + &other
    }
}

impl<'a, 'b, F: Field> Add<&'a DenseMultilinearExtension<F>> for &'b DenseMultilinearExtension<F> {
    type Output = DenseMultilinearExtension<F>;

    fn add(self, rhs: &'a DenseMultilinearExtension<F>) -> Self::Output {
        // handle constant zero case
        if rhs.is_zero() {
            return self.clone();
        }
        if self.is_zero() {
            return rhs.clone();
        }
        assert_eq!(self.num_vars, rhs.num_vars);
        let result: Vec<F> = cfg_iter!(self.evaluations)
            .zip(cfg_iter!(rhs.evaluations))
            .map(|(a, b)| *a + *b)
            .collect();

        Self::Output::from_evaluations_vec(self.num_vars, result)
    }
}

impl<F: Field> AddAssign for DenseMultilinearExtension<F> {
    fn add_assign(&mut self, other: Self) {
        *self = &*self + &other;
    }
}

impl<'a, F: Field> AddAssign<&'a DenseMultilinearExtension<F>> for DenseMultilinearExtension<F> {
    fn add_assign(&mut self, other: &'a DenseMultilinearExtension<F>) {
        *self = &*self + other;
    }
}

impl<'a, F: Field> AddAssign<(F, &'a DenseMultilinearExtension<F>)>
    for DenseMultilinearExtension<F>
{
    fn add_assign(&mut self, (f, other): (F, &'a DenseMultilinearExtension<F>)) {
        let other = Self {
            num_vars: other.num_vars,
            evaluations: cfg_iter!(other.evaluations).map(|x| f * x).collect(),
        };
        *self = &*self + &other;
    }
}

impl<F: Field> Neg for DenseMultilinearExtension<F> {
    type Output = DenseMultilinearExtension<F>;

    fn neg(self) -> Self::Output {
        Self::Output {
            num_vars: self.num_vars,
            evaluations: cfg_iter!(self.evaluations).map(|x| -*x).collect(),
        }
    }
}

impl<F: Field> Sub for DenseMultilinearExtension<F> {
    type Output = DenseMultilinearExtension<F>;

    fn sub(self, other: DenseMultilinearExtension<F>) -> Self {
        &self - &other
    }
}

impl<'a, 'b, F: Field> Sub<&'a DenseMultilinearExtension<F>> for &'b DenseMultilinearExtension<F> {
    type Output = DenseMultilinearExtension<F>;

    fn sub(self, rhs: &'a DenseMultilinearExtension<F>) -> Self::Output {
        self + &rhs.clone().neg()
    }
}

impl<F: Field> SubAssign for DenseMultilinearExtension<F> {
    fn sub_assign(&mut self, other: Self) {
        *self = &*self - &other;
    }
}

impl<'a, F: Field> SubAssign<&'a DenseMultilinearExtension<F>> for DenseMultilinearExtension<F> {
    fn sub_assign(&mut self, other: &'a DenseMultilinearExtension<F>) {
        *self = &*self - other;
    }
}

impl<F: Field> fmt::Debug for DenseMultilinearExtension<F> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
        write!(f, "DenseML(nv = {}, evaluations = [", self.num_vars)?;
        for i in 0..ark_std::cmp::min(4, self.evaluations.len()) {
            write!(f, "{:?} ", self.evaluations[i])?;
        }
        if self.evaluations.len() < 4 {
            write!(f, "])")?;
        } else {
            write!(f, "...])")?;
        }
        Ok(())
    }
}

impl<F: Field> Zero for DenseMultilinearExtension<F> {
    fn zero() -> Self {
        Self {
            num_vars: 0,
            evaluations: vec![F::zero()],
        }
    }

    fn is_zero(&self) -> bool {
        self.num_vars == 0 && self.evaluations[0].is_zero()
    }
}

#[cfg(test)]
mod tests {
    use crate::{DenseMultilinearExtension, MultilinearExtension};
    use ark_ff::{Field, Zero};
    use ark_std::{ops::Neg, test_rng, vec::Vec, UniformRand};
    use ark_test_curves::bls12_381::Fr;

    /// utility: evaluate multilinear extension (in form of data array) at a random point
    fn evaluate_data_array<F: Field>(data: &[F], point: &[F]) -> F {
        if data.len() != (1 << point.len()) {
            panic!("Data size mismatch with number of variables. ")
        }

        let nv = point.len();
        let mut a = data.to_vec();

        for i in 1..nv + 1 {
            let r = point[i - 1];
            for b in 0..(1 << (nv - i)) {
                a[b] = a[b << 1] * (F::one() - r) + a[(b << 1) + 1] * r;
            }
        }
        a[0]
    }

    #[test]
    fn evaluate_at_a_point() {
        let mut rng = test_rng();
        let poly = DenseMultilinearExtension::rand(10, &mut rng);
        for _ in 0..10 {
            let point: Vec<_> = (0..10).map(|_| Fr::rand(&mut rng)).collect();
            assert_eq!(
                evaluate_data_array(&poly.evaluations, &point),
                poly.evaluate(&point).unwrap()
            )
        }
    }

    #[test]
    fn relabel_polynomial() {
        let mut rng = test_rng();
        for _ in 0..20 {
            let mut poly = DenseMultilinearExtension::rand(10, &mut rng);
            let mut point: Vec<_> = (0..10).map(|_| Fr::rand(&mut rng)).collect();

            let expected = poly.evaluate(&point);

            poly.relabel_in_place(2, 2, 1); // should have no effect
            assert_eq!(expected, poly.evaluate(&point));

            poly.relabel_in_place(3, 4, 1); // should switch 3 and 4
            point.swap(3, 4);
            assert_eq!(expected, poly.evaluate(&point));

            poly.relabel_in_place(7, 5, 1);
            point.swap(7, 5);
            assert_eq!(expected, poly.evaluate(&point));

            poly.relabel_in_place(2, 5, 3);
            point.swap(2, 5);
            point.swap(3, 6);
            point.swap(4, 7);
            assert_eq!(expected, poly.evaluate(&point));

            poly.relabel_in_place(7, 0, 2);
            point.swap(0, 7);
            point.swap(1, 8);
            assert_eq!(expected, poly.evaluate(&point));

            poly.relabel_in_place(0, 9, 1);
            point.swap(0, 9);
            assert_eq!(expected, poly.evaluate(&point));
        }
    }

    #[test]
    fn arithmetic() {
        const NV: usize = 10;
        let mut rng = test_rng();
        for _ in 0..20 {
            let point: Vec<_> = (0..NV).map(|_| Fr::rand(&mut rng)).collect();
            let poly1 = DenseMultilinearExtension::rand(NV, &mut rng);
            let poly2 = DenseMultilinearExtension::rand(NV, &mut rng);
            let v1 = poly1.evaluate(&point).unwrap();
            let v2 = poly2.evaluate(&point).unwrap();
            // test add
            assert_eq!((&poly1 + &poly2).evaluate(&point).unwrap(), v1 + v2);
            // test sub
            assert_eq!((&poly1 - &poly2).evaluate(&point).unwrap(), v1 - v2);
            // test negate
            assert_eq!(poly1.clone().neg().evaluate(&point).unwrap(), -v1);
            // test add assign
            {
                let mut poly1 = poly1.clone();
                poly1 += &poly2;
                assert_eq!(poly1.evaluate(&point).unwrap(), v1 + v2)
            }
            // test sub assign
            {
                let mut poly1 = poly1.clone();
                poly1 -= &poly2;
                assert_eq!(poly1.evaluate(&point).unwrap(), v1 - v2)
            }
            // test add assign with scalar
            {
                let mut poly1 = poly1.clone();
                let scalar = Fr::rand(&mut rng);
                poly1 += (scalar, &poly2);
                assert_eq!(poly1.evaluate(&point).unwrap(), v1 + scalar * v2)
            }
            // test additive identity
            {
                assert_eq!(&poly1 + &DenseMultilinearExtension::zero(), poly1);
                assert_eq!(&DenseMultilinearExtension::zero() + &poly1, poly1);
                {
                    let mut poly1_cloned = poly1.clone();
                    poly1_cloned += &DenseMultilinearExtension::zero();
                    assert_eq!(&poly1_cloned, &poly1);
                    let mut zero = DenseMultilinearExtension::zero();
                    let scalar = Fr::rand(&mut rng);
                    zero += (scalar, &poly1);
                    assert_eq!(zero.evaluate(&point).unwrap(), scalar * v1);
                }
            }
        }
    }
}