1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
use ark_ff::Field;
use ark_std::borrow::Borrow;
use ark_std::vec::Vec;

use crate::streaming_kzg::ceil_div;
use ark_std::iterable::Iterable;

/// A `Streamer` folding a vector of coefficients
/// with the given challenges, and producing a stream of items
/// `(i, v)` where `i` indicates the depth, and `v` is the next coefficient.
/// The stream can produce all foldings in the tree with a single pass over the initial stream.
#[derive(Clone, Copy)]
pub struct FoldedPolynomialTree<'a, F, S> {
    challenges: &'a [F],
    coefficients: &'a S,
}

impl<'a, F, S> FoldedPolynomialTree<'a, F, S>
where
    S: Iterable,
    F: Field,
    S::Item: Borrow<F>,
{
    /// Initialize a new polynomial tree.
    pub fn new(coefficients: &'a S, challenges: &'a [F]) -> Self {
        Self {
            coefficients,
            challenges,
        }
    }

    /// Outputs the depth of the polynomial tree.
    #[inline]
    pub fn depth(&self) -> usize {
        self.challenges.len()
    }
}

impl<'a, F, S> Iterable for FoldedPolynomialTree<'a, F, S>
where
    S: Iterable,
    F: Field,
    S::Item: Borrow<F>,
{
    type Item = (usize, F);

    type Iter = FoldedPolynomialTreeIter<'a, F, S::Iter>;

    fn iter(&self) -> Self::Iter {
        FoldedPolynomialTreeIter::new(
            self.coefficients.iter(),
            self.coefficients.len(),
            self.challenges,
        )
    }

    fn len(&self) -> usize {
        self.coefficients.len()
    }
}

/// Iterator of the polynomial tree.
pub struct FoldedPolynomialTreeIter<'a, F, I> {
    challenges: &'a [F],
    iterator: I,
    stack: Vec<(usize, F)>,
}

fn init_stack<F: Field>(n: usize, challenges_len: usize) -> Vec<(usize, F)> {
    let mut stack = Vec::with_capacity(challenges_len);

    // generally we expect the size to be a power of two.
    // If not, we are going to fill the stack as if the array was padded to zero up to the expected size.
    let chunk_size = 1 << challenges_len;
    if n % chunk_size != 0 {
        let mut delta = chunk_size - n % chunk_size;
        for i in (0..challenges_len).rev() {
            if delta >= 1 << i {
                stack.push((i, F::zero()));
                delta -= 1 << i
            }
        }
    }
    stack
}

impl<'a, F, I> FoldedPolynomialTreeIter<'a, F, I>
where
    F: Field,
    I: Iterator,
    I::Item: Borrow<F>,
{
    fn new(iterator: I, n: usize, challenges: &'a [F]) -> Self {
        let stack = init_stack(n, challenges.len());

        Self {
            challenges,
            iterator,
            stack,
        }
    }
}

impl<'a, F, I> Iterator for FoldedPolynomialTreeIter<'a, F, I>
where
    F: Field,
    I: Iterator,
    I::Item: Borrow<F>,
{
    type Item = (usize, F);

    fn next(&mut self) -> Option<<Self as Iterator>::Item> {
        let len = self.stack.len();
        let item = if len > 1 && self.stack[len - 1].0 == self.stack[len - 2].0 {
            // pop the last two elements from the stack.
            // we could also use .pop() twice but truncate is slightly faster.
            let (_level, lhs) = self.stack[len - 1];
            let (level, rhs) = self.stack[len - 2];
            self.stack.truncate(len - 2);
            // fold them producing the coefficient and the level `level+1`
            let folded_coefficient = rhs * self.challenges[level] + lhs;
            (level + 1, folded_coefficient)
        } else {
            (0, *self.iterator.next()?.borrow())
        };

        // do not add to the stack the coefficient of the max-depth folded polynomial.
        if item.0 != self.challenges.len() {
            self.stack.push(item)
        }

        // Skip the base polynomial, recursively calling itself to access the next level
        if item.0 == 0 {
            self.next()
        } else {
            Some(item)
        }
    }
}

/// Stream implementation of foleded polynomial.
#[derive(Clone, Copy)]
pub struct FoldedPolynomialStream<'a, F, S>(FoldedPolynomialTree<'a, F, S>, usize);
/// Iterator implementation of foleded polynomial.
pub struct FoldedPolynomialStreamIter<'a, F, I> {
    challenges: &'a [F],
    iterator: I,
    stack: Vec<(usize, F)>,
}

impl<'a, F, S> FoldedPolynomialStream<'a, F, S>
where
    S: Iterable,
    F: Field,
    S::Item: Borrow<F>,
{
    /// Initialize a new folded polynomial stream.
    pub fn new(coefficients: &'a S, challenges: &'a [F]) -> Self {
        let tree = FoldedPolynomialTree::new(coefficients, challenges);
        let len = challenges.len();
        Self(tree, len)
    }
}

impl<'a, F, S> Iterable for FoldedPolynomialStream<'a, F, S>
where
    S: Iterable,
    F: Field,
    S::Item: Borrow<F>,
{
    type Item = F;
    type Iter = FoldedPolynomialStreamIter<'a, F, S::Iter>;

    fn iter(&self) -> Self::Iter {
        let iterator = self.0.coefficients.iter();
        let challenges = self.0.challenges;
        let stack = init_stack(self.0.coefficients.len(), challenges.len());
        FoldedPolynomialStreamIter {
            iterator,
            challenges,
            stack,
        }
    }

    fn len(&self) -> usize {
        ceil_div(self.0.len(), 1 << self.0.challenges.len())
    }
}

impl<'a, F, I> Iterator for FoldedPolynomialStreamIter<'a, F, I>
where
    F: Field,
    I: Iterator,
    I::Item: Borrow<F>,
{
    type Item = F;

    fn next(&mut self) -> Option<Self::Item> {
        let target_level = self.challenges.len();
        loop {
            let len = self.stack.len();
            let (level, element) = if len > 1 && self.stack[len - 1].0 == self.stack[len - 2].0 {
                let (_level, lhs) = self.stack[len - 1];
                let (level, rhs) = self.stack[len - 2];
                self.stack.truncate(len - 2);

                let folded_coefficient = rhs * self.challenges[level] + lhs;
                (level + 1, folded_coefficient)
            } else if target_level > 0 && (len == 0 || (len > 0 && self.stack[len - 1].0 != 0)) {
                // If the target level is strictly positive, there's no need to put elements of level zero in the stream.
                // We can immediately read 2 elements from the stream and push an element of the form (1, folded_coefficient).
                // Nota bene: this branch is not needed, but brings in a decent speed-up for the resulting implementation.
                let rhs = self.iterator.next()?;
                let lhs = self.iterator.next()?;

                let folded_coefficient = self.challenges[0] * rhs.borrow() + lhs.borrow();
                (1, folded_coefficient)
            } else {
                (0, *self.iterator.next()?.borrow())
            };

            // do not add to the stack the coefficient of the folded polynomial, but instead return it.
            if level != target_level {
                self.stack.push((level, element))
            } else {
                return Some(element);
            }
        }
    }
}

#[test]
fn test_folded_polynomial() {
    use ark_bls12_381::Fr as F;
    use ark_ff::One;

    let two = F::one() + F::one();

    let coefficients = vec![F::one(), two, F::one(), F::one()];
    let challenges = vec![F::one(), two];
    let coefficients_stream = coefficients.as_slice();
    let foldstream = FoldedPolynomialTree::new(&coefficients_stream, challenges.as_slice());
    let fold_stream = FoldedPolynomialStream(foldstream, 2);
    assert_eq!(fold_stream.len(), 1);
    assert_eq!(
        fold_stream.iter().next(),
        Some(two + two * (F::one() + two))
    );

    let one = F::one();
    let coefficients = vec![one; 12];
    let challenges = vec![F::one(); 4];
    let coefficients_stream = coefficients.as_slice();
    let foldstream = FoldedPolynomialTree::new(&coefficients_stream, challenges.as_slice());
    let fold_stream = FoldedPolynomialStream(foldstream, 4).iter();
    assert_eq!(fold_stream.last(), Some(coefficients.iter().sum()));
}

#[test]
fn test_folded_polynomial_tree() {
    use ark_bls12_381::Fr as F;
    use ark_ff::One;

    let two = F::one() + F::one();

    let coefficients = vec![F::one(), two, F::one(), F::one()];
    let challenges = vec![F::one(), two];
    let coefficients_stream = coefficients.as_slice();
    let fold_streamer = FoldedPolynomialTree::new(&coefficients_stream, challenges.as_slice());
    let mut fold_iter = fold_streamer.iter();
    // assert_eq!(fold_stream.next(), Some((0, F::one())));
    // assert_eq!(fold_stream.next(), Some((0, two)));
    assert_eq!(fold_iter.next(), Some((1, F::one() + two)));
    // assert_eq!(fold_stream.next(), Some((0, F::one())));
    // assert_eq!(fold_stream.next(), Some((0, F::one())));
    assert_eq!(fold_iter.next(), Some((1, F::one() + F::one())));
    assert_eq!(fold_iter.next(), Some((2, two + two * (F::one() + two))));

    let one = F::one();
    let coefficients = vec![one; 12];
    let challenges = vec![F::one(); 4];
    let coefficients_stream = coefficients.as_slice();
    let fold_streamer = FoldedPolynomialTree::new(&coefficients_stream, challenges.as_slice());
    let fold_init = fold_streamer.iter();
    let mut fold_iter = fold_init.skip(5);
    assert_eq!(fold_iter.next(), Some((1, two)));
    assert_eq!(fold_iter.last(), Some((4, coefficients.iter().sum())));
}