1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
use crate::{
    DenseUVPolynomial, PCCommitment, PCCommitterKey, PCPreparedCommitment, PCPreparedVerifierKey,
    PCRandomness, PCVerifierKey, Vec,
};
use ark_ec::pairing::Pairing;
use ark_ec::Group;
use ark_ff::{Field, PrimeField, ToConstraintField};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::ops::{Add, AddAssign};
use ark_std::rand::RngCore;

use crate::kzg10;
/// `UniversalParams` are the universal parameters for the KZG10 scheme.
pub type UniversalParams<E> = kzg10::UniversalParams<E>;

/// `CommitterKey` is used to commit to and create evaluation proofs for a given
/// polynomial.
#[derive(Derivative, CanonicalSerialize, CanonicalDeserialize)]
#[derivative(
    Default(bound = ""),
    Hash(bound = ""),
    Clone(bound = ""),
    Debug(bound = "")
)]
pub struct CommitterKey<E: Pairing> {
    /// The key used to commit to polynomials.
    pub powers: Vec<E::G1Affine>,

    /// The key used to commit to shifted polynomials.
    /// This is `None` if `self` does not support enforcing any degree bounds.
    pub shifted_powers: Option<Vec<E::G1Affine>>,

    /// The key used to commit to hiding polynomials.
    pub powers_of_gamma_g: Vec<E::G1Affine>,

    /// The degree bounds that are supported by `self`.
    /// In ascending order from smallest to largest.
    /// This is `None` if `self` does not support enforcing any degree bounds.
    pub enforced_degree_bounds: Option<Vec<usize>>,
    /// The maximum degree supported by the `UniversalParams` `self` was derived
    /// from.
    pub max_degree: usize,
}

impl<E: Pairing> CommitterKey<E> {
    /// Obtain powers for the underlying KZG10 construction
    pub fn powers<'a>(&'a self) -> kzg10::Powers<'a, E> {
        kzg10::Powers {
            powers_of_g: self.powers.as_slice().into(),
            powers_of_gamma_g: self.powers_of_gamma_g.as_slice().into(),
        }
    }

    /// Obtain powers for committing to shifted polynomials.
    pub fn shifted_powers<'a>(
        &'a self,
        degree_bound: impl Into<Option<usize>>,
    ) -> Option<kzg10::Powers<'a, E>> {
        self.shifted_powers.as_ref().map(|shifted_powers| {
            let powers_range = if let Some(degree_bound) = degree_bound.into() {
                assert!(self
                    .enforced_degree_bounds
                    .as_ref()
                    .unwrap()
                    .contains(&degree_bound));
                let max_bound = self
                    .enforced_degree_bounds
                    .as_ref()
                    .unwrap()
                    .last()
                    .unwrap();
                (max_bound - degree_bound)..
            } else {
                0..
            };
            let ck = kzg10::Powers {
                powers_of_g: (&shifted_powers[powers_range]).into(),
                powers_of_gamma_g: self.powers_of_gamma_g.as_slice().into(),
            };
            ck
        })
    }
}

impl<E: Pairing> PCCommitterKey for CommitterKey<E> {
    fn max_degree(&self) -> usize {
        self.max_degree
    }

    fn supported_degree(&self) -> usize {
        self.powers.len() - 1
    }
}

/// `VerifierKey` is used to check evaluation proofs for a given commitment.
#[derive(Derivative, CanonicalSerialize, CanonicalDeserialize)]
#[derivative(Default(bound = ""), Clone(bound = ""), Debug(bound = ""))]
pub struct VerifierKey<E: Pairing> {
    /// The verification key for the underlying KZG10 scheme.
    pub vk: kzg10::VerifierKey<E>,
    /// Information required to enforce degree bounds. Each pair
    /// is of the form `(degree_bound, shifting_advice)`.
    /// The vector is sorted in ascending order of `degree_bound`.
    /// This is `None` if `self` does not support enforcing any degree bounds.
    pub degree_bounds_and_shift_powers: Option<Vec<(usize, E::G1Affine)>>,
    /// The maximum degree supported by the `UniversalParams` `self` was derived
    /// from.
    pub max_degree: usize,
    /// The maximum degree supported by the trimmed parameters that `self` is
    /// a part of.
    pub supported_degree: usize,
}

impl<E: Pairing> VerifierKey<E> {
    /// Find the appropriate shift for the degree bound.
    pub fn get_shift_power(&self, bound: usize) -> Option<E::G1Affine> {
        self.degree_bounds_and_shift_powers.as_ref().and_then(|v| {
            v.binary_search_by(|(d, _)| d.cmp(&bound))
                .ok()
                .map(|i| v[i].1)
        })
    }
}

impl<E: Pairing> PCVerifierKey for VerifierKey<E> {
    fn max_degree(&self) -> usize {
        self.max_degree
    }

    fn supported_degree(&self) -> usize {
        self.supported_degree
    }
}

impl<E: Pairing> ToConstraintField<<E::TargetField as Field>::BasePrimeField> for VerifierKey<E>
where
    E::G1Affine: ToConstraintField<<E::TargetField as Field>::BasePrimeField>,
    E::G2Affine: ToConstraintField<<E::TargetField as Field>::BasePrimeField>,
{
    fn to_field_elements(&self) -> Option<Vec<<E::TargetField as Field>::BasePrimeField>> {
        let mut res = Vec::new();
        res.extend_from_slice(&self.vk.to_field_elements().unwrap());

        if let Some(degree_bounds_and_shift_powers) = &self.degree_bounds_and_shift_powers {
            for (d, shift_power) in degree_bounds_and_shift_powers.iter() {
                let d_elem: <E::TargetField as Field>::BasePrimeField = (*d as u64).into();

                res.push(d_elem);
                res.extend_from_slice(&shift_power.to_field_elements().unwrap());
            }
        }

        Some(res)
    }
}

/// `PreparedVerifierKey` is used to check evaluation proofs for a given commitment.
#[derive(Derivative)]
#[derivative(Clone(bound = ""), Debug(bound = ""))]
pub struct PreparedVerifierKey<E: Pairing> {
    /// The verification key for the underlying KZG10 scheme.
    pub prepared_vk: kzg10::PreparedVerifierKey<E>,
    /// Information required to enforce degree bounds. Each pair
    /// is of the form `(degree_bound, shifting_advice)`.
    /// This is `None` if `self` does not support enforcing any degree bounds.
    pub prepared_degree_bounds_and_shift_powers: Option<Vec<(usize, Vec<E::G1Affine>)>>,
    /// The maximum degree supported by the `UniversalParams` `self` was derived
    /// from.
    pub max_degree: usize,
    /// The maximum degree supported by the trimmed parameters that `self` is
    /// a part of.
    pub supported_degree: usize,
}

impl<E: Pairing> PCPreparedVerifierKey<VerifierKey<E>> for PreparedVerifierKey<E> {
    /// prepare `PreparedVerifierKey` from `VerifierKey`
    fn prepare(vk: &VerifierKey<E>) -> Self {
        let prepared_vk = kzg10::PreparedVerifierKey::<E>::prepare(&vk.vk);

        let supported_bits = E::ScalarField::MODULUS_BIT_SIZE as usize;

        let prepared_degree_bounds_and_shift_powers: Option<Vec<(usize, Vec<E::G1Affine>)>> =
            if vk.degree_bounds_and_shift_powers.is_some() {
                let mut res = Vec::<(usize, Vec<E::G1Affine>)>::new();

                let degree_bounds_and_shift_powers =
                    vk.degree_bounds_and_shift_powers.as_ref().unwrap();

                for (d, shift_power) in degree_bounds_and_shift_powers {
                    let mut prepared_shift_power = Vec::<E::G1Affine>::new();

                    let mut cur = E::G1::from(shift_power.clone());
                    for _ in 0..supported_bits {
                        prepared_shift_power.push(cur.clone().into());
                        cur.double_in_place();
                    }

                    res.push((d.clone(), prepared_shift_power));
                }

                Some(res)
            } else {
                None
            };

        Self {
            prepared_vk,
            prepared_degree_bounds_and_shift_powers,
            max_degree: vk.max_degree,
            supported_degree: vk.supported_degree,
        }
    }
}

/// Commitment to a polynomial that optionally enforces a degree bound.
#[derive(Derivative, CanonicalSerialize, CanonicalDeserialize)]
#[derivative(
    Default(bound = ""),
    Hash(bound = ""),
    Clone(bound = ""),
    Copy(bound = ""),
    Debug(bound = ""),
    PartialEq(bound = ""),
    Eq(bound = "")
)]
pub struct Commitment<E: Pairing> {
    /// A KZG10 commitment to the polynomial.
    pub comm: kzg10::Commitment<E>,

    /// A KZG10 commitment to the shifted polynomial.
    /// This is `none` if the committed polynomial does not
    /// enforce a strict degree bound.
    pub shifted_comm: Option<kzg10::Commitment<E>>,
}

impl<E: Pairing> ToConstraintField<<E::TargetField as Field>::BasePrimeField> for Commitment<E>
where
    E::G1Affine: ToConstraintField<<E::TargetField as Field>::BasePrimeField>,
{
    fn to_field_elements(&self) -> Option<Vec<<E::TargetField as Field>::BasePrimeField>> {
        let mut res = Vec::new();
        res.extend_from_slice(&self.comm.to_field_elements().unwrap());

        if let Some(shifted_comm) = &self.shifted_comm {
            res.extend_from_slice(&shifted_comm.to_field_elements().unwrap());
        }

        Some(res)
    }
}

impl<E: Pairing> PCCommitment for Commitment<E> {
    #[inline]
    fn empty() -> Self {
        Self {
            comm: kzg10::Commitment::empty(),
            shifted_comm: Some(kzg10::Commitment::empty()),
        }
    }

    fn has_degree_bound(&self) -> bool {
        self.shifted_comm.is_some()
    }
}

/// Prepared commitment to a polynomial that optionally enforces a degree bound.
#[derive(Derivative)]
#[derivative(
    Hash(bound = ""),
    Clone(bound = ""),
    Debug(bound = ""),
    PartialEq(bound = ""),
    Eq(bound = "")
)]
pub struct PreparedCommitment<E: Pairing> {
    pub(crate) prepared_comm: kzg10::PreparedCommitment<E>,
    pub(crate) shifted_comm: Option<kzg10::Commitment<E>>,
}

impl<E: Pairing> PCPreparedCommitment<Commitment<E>> for PreparedCommitment<E> {
    /// Prepare commitment to a polynomial that optionally enforces a degree bound.
    fn prepare(comm: &Commitment<E>) -> Self {
        let prepared_comm = kzg10::PreparedCommitment::<E>::prepare(&comm.comm);

        let shifted_comm = comm.shifted_comm.clone();

        Self {
            prepared_comm,
            shifted_comm,
        }
    }
}

/// `Randomness` hides the polynomial inside a commitment. It is output by `KZG10::commit`.
#[derive(Derivative, CanonicalSerialize, CanonicalDeserialize)]
#[derivative(
    Hash(bound = ""),
    Clone(bound = ""),
    Debug(bound = ""),
    PartialEq(bound = ""),
    Eq(bound = "")
)]
pub struct Randomness<F: PrimeField, P: DenseUVPolynomial<F>> {
    /// Commitment randomness for a KZG10 commitment.
    pub rand: kzg10::Randomness<F, P>,
    /// Commitment randomness for a KZG10 commitment to the shifted polynomial.
    /// This is `None` if the committed polynomial does not enforce a strict
    /// degree bound.
    pub shifted_rand: Option<kzg10::Randomness<F, P>>,
}

impl<'a, F: PrimeField, P: DenseUVPolynomial<F>> Add<&'a Self> for Randomness<F, P> {
    type Output = Self;

    fn add(mut self, other: &'a Self) -> Self {
        self += other;
        self
    }
}

impl<'a, F: PrimeField, P: DenseUVPolynomial<F>> AddAssign<&'a Self> for Randomness<F, P> {
    #[inline]
    fn add_assign(&mut self, other: &'a Self) {
        self.rand += &other.rand;
        if let Some(r1) = &mut self.shifted_rand {
            *r1 += other
                .shifted_rand
                .as_ref()
                .unwrap_or(&kzg10::Randomness::empty());
        } else {
            self.shifted_rand = other.shifted_rand.as_ref().map(|r| r.clone());
        }
    }
}

impl<'a, F: PrimeField, P: DenseUVPolynomial<F>> Add<(F, &'a Randomness<F, P>)>
    for Randomness<F, P>
{
    type Output = Self;

    #[inline]
    fn add(mut self, other: (F, &'a Randomness<F, P>)) -> Self {
        self += other;
        self
    }
}

impl<'a, F: PrimeField, P: DenseUVPolynomial<F>> AddAssign<(F, &'a Randomness<F, P>)>
    for Randomness<F, P>
{
    #[inline]
    fn add_assign(&mut self, (f, other): (F, &'a Randomness<F, P>)) {
        self.rand += (f, &other.rand);
        let empty = kzg10::Randomness::empty();
        if let Some(r1) = &mut self.shifted_rand {
            *r1 += (f, other.shifted_rand.as_ref().unwrap_or(&empty));
        } else {
            self.shifted_rand = other.shifted_rand.as_ref().map(|r| empty + (f, r));
        }
    }
}

impl<F: PrimeField, P: DenseUVPolynomial<F>> PCRandomness for Randomness<F, P> {
    fn empty() -> Self {
        Self {
            rand: kzg10::Randomness::empty(),
            shifted_rand: None,
        }
    }

    fn rand<R: RngCore>(
        hiding_bound: usize,
        has_degree_bound: bool,
        _: Option<usize>,
        rng: &mut R,
    ) -> Self {
        let shifted_rand = if has_degree_bound {
            Some(kzg10::Randomness::rand(hiding_bound, false, None, rng))
        } else {
            None
        };
        Self {
            rand: kzg10::Randomness::rand(hiding_bound, false, None, rng),
            shifted_rand,
        }
    }
}