1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
#![cfg_attr(not(feature = "std"), no_std)]
//! A crate for the Marlin preprocessing zkSNARK for R1CS.
//!
//! # Note
//!
//! Currently, Marlin only supports R1CS instances where the number of inputs
//! is the same as the number of constraints (i.e., where the constraint
//! matrices are square). Furthermore, Marlin only supports instances where the
//! public inputs are of size one less than a power of 2 (i.e., 2^n - 1).
#![deny(unused_import_braces, unused_qualifications, trivial_casts)]
#![deny(trivial_numeric_casts, private_in_public)]
#![deny(stable_features, unreachable_pub, non_shorthand_field_patterns)]
#![deny(unused_attributes, unused_imports, unused_mut, missing_docs)]
#![deny(renamed_and_removed_lints, stable_features, unused_allocation)]
#![deny(unused_comparisons, bare_trait_objects, unused_must_use, const_err)]
#![forbid(unsafe_code)]

#[macro_use]
extern crate ark_std;

use ark_ff::{to_bytes, PrimeField, UniformRand};
use ark_poly::{univariate::DensePolynomial, EvaluationDomain, GeneralEvaluationDomain};
use ark_poly_commit::Evaluations;
use ark_poly_commit::{LabeledCommitment, PCUniversalParams, PolynomialCommitment};
use ark_relations::r1cs::ConstraintSynthesizer;
use ark_std::rand::RngCore;
use digest::Digest;

use ark_std::{
    collections::BTreeMap,
    format,
    marker::PhantomData,
    string::{String, ToString},
    vec,
    vec::Vec,
};

#[cfg(not(feature = "std"))]
macro_rules! eprintln {
    () => {};
    ($($arg: tt)*) => {};
}

/// Implements a Fiat-Shamir based Rng that allows one to incrementally update
/// the seed based on new messages in the proof transcript.
pub mod rng;
use rng::FiatShamirRng;

mod error;
pub use error::*;

mod data_structures;
pub use data_structures::*;

/// Implements an Algebraic Holographic Proof (AHP) for the R1CS indexed relation.
pub mod ahp;
pub use ahp::AHPForR1CS;
use ahp::EvaluationsProvider;

#[cfg(test)]
mod test;

/// The compiled argument system.
pub struct Marlin<F: PrimeField, PC: PolynomialCommitment<F, DensePolynomial<F>>, D: Digest>(
    #[doc(hidden)] PhantomData<F>,
    #[doc(hidden)] PhantomData<PC>,
    #[doc(hidden)] PhantomData<D>,
);

impl<F: PrimeField, PC: PolynomialCommitment<F, DensePolynomial<F>>, D: Digest> Marlin<F, PC, D> {
    /// The personalization string for this protocol. Used to personalize the
    /// Fiat-Shamir rng.
    pub const PROTOCOL_NAME: &'static [u8] = b"MARLIN-2019";

    /// Generate the universal prover and verifier keys for the
    /// argument system.
    pub fn universal_setup<R: RngCore>(
        num_constraints: usize,
        num_variables: usize,
        num_non_zero: usize,
        rng: &mut R,
    ) -> Result<UniversalSRS<F, PC>, Error<PC::Error>> {
        let max_degree = AHPForR1CS::<F>::max_degree(num_constraints, num_variables, num_non_zero)?;
        let setup_time = start_timer!(|| {
            format!(
            "Marlin::UniversalSetup with max_degree {}, computed for a maximum of {} constraints, {} vars, {} non_zero",
            max_degree, num_constraints, num_variables, num_non_zero,
        )
        });

        let srs = PC::setup(max_degree, None, rng).map_err(Error::from_pc_err);
        end_timer!(setup_time);
        srs
    }

    /// Generate the index-specific (i.e., circuit-specific) prover and verifier
    /// keys. This is a deterministic algorithm that anyone can rerun.
    pub fn index<C: ConstraintSynthesizer<F>>(
        srs: &UniversalSRS<F, PC>,
        c: C,
    ) -> Result<(IndexProverKey<F, PC>, IndexVerifierKey<F, PC>), Error<PC::Error>> {
        let index_time = start_timer!(|| "Marlin::Index");

        // TODO: Add check that c is in the correct mode.
        let index = AHPForR1CS::index(c)?;
        if srs.max_degree() < index.max_degree() {
            Err(Error::IndexTooLarge)?;
        }

        let coeff_support = AHPForR1CS::get_degree_bounds(&index.index_info);
        // Marlin only needs degree 2 random polynomials
        let supported_hiding_bound = 1;
        let (committer_key, verifier_key) = PC::trim(
            &srs,
            index.max_degree(),
            supported_hiding_bound,
            Some(&coeff_support),
        )
        .map_err(Error::from_pc_err)?;

        let commit_time = start_timer!(|| "Commit to index polynomials");
        let (index_comms, index_comm_rands): (_, _) =
            PC::commit(&committer_key, index.iter(), None).map_err(Error::from_pc_err)?;
        end_timer!(commit_time);

        let index_comms = index_comms
            .into_iter()
            .map(|c| c.commitment().clone())
            .collect();
        let index_vk = IndexVerifierKey {
            index_info: index.index_info,
            index_comms,
            verifier_key,
        };

        let index_pk = IndexProverKey {
            index,
            index_comm_rands,
            index_vk: index_vk.clone(),
            committer_key,
        };

        end_timer!(index_time);

        Ok((index_pk, index_vk))
    }

    /// Create a zkSNARK asserting that the constraint system is satisfied.
    pub fn prove<C: ConstraintSynthesizer<F>, R: RngCore>(
        index_pk: &IndexProverKey<F, PC>,
        c: C,
        zk_rng: &mut R,
    ) -> Result<Proof<F, PC>, Error<PC::Error>> {
        let prover_time = start_timer!(|| "Marlin::Prover");
        // Add check that c is in the correct mode.

        let prover_init_state = AHPForR1CS::prover_init(&index_pk.index, c)?;
        let public_input = prover_init_state.public_input();
        let mut fs_rng = FiatShamirRng::<D>::from_seed(
            &to_bytes![&Self::PROTOCOL_NAME, &index_pk.index_vk, &public_input].unwrap(),
        );

        // --------------------------------------------------------------------
        // First round

        let (prover_first_msg, prover_first_oracles, prover_state) =
            AHPForR1CS::prover_first_round(prover_init_state, zk_rng)?;

        let first_round_comm_time = start_timer!(|| "Committing to first round polys");
        let (first_comms, first_comm_rands) = PC::commit(
            &index_pk.committer_key,
            prover_first_oracles.iter(),
            Some(zk_rng),
        )
        .map_err(Error::from_pc_err)?;
        end_timer!(first_round_comm_time);

        fs_rng.absorb(&to_bytes![first_comms, prover_first_msg].unwrap());

        let (verifier_first_msg, verifier_state) =
            AHPForR1CS::verifier_first_round(index_pk.index_vk.index_info, &mut fs_rng)?;
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Second round

        let (prover_second_msg, prover_second_oracles, prover_state) =
            AHPForR1CS::prover_second_round(&verifier_first_msg, prover_state, zk_rng);

        let second_round_comm_time = start_timer!(|| "Committing to second round polys");
        let (second_comms, second_comm_rands) = PC::commit(
            &index_pk.committer_key,
            prover_second_oracles.iter(),
            Some(zk_rng),
        )
        .map_err(Error::from_pc_err)?;
        end_timer!(second_round_comm_time);

        fs_rng.absorb(&to_bytes![second_comms, prover_second_msg].unwrap());

        let (verifier_second_msg, verifier_state) =
            AHPForR1CS::verifier_second_round(verifier_state, &mut fs_rng);
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Third round
        let (prover_third_msg, prover_third_oracles) =
            AHPForR1CS::prover_third_round(&verifier_second_msg, prover_state, zk_rng)?;

        let third_round_comm_time = start_timer!(|| "Committing to third round polys");
        let (third_comms, third_comm_rands) = PC::commit(
            &index_pk.committer_key,
            prover_third_oracles.iter(),
            Some(zk_rng),
        )
        .map_err(Error::from_pc_err)?;
        end_timer!(third_round_comm_time);

        fs_rng.absorb(&to_bytes![third_comms, prover_third_msg].unwrap());

        let verifier_state = AHPForR1CS::verifier_third_round(verifier_state, &mut fs_rng);
        // --------------------------------------------------------------------

        // Gather prover polynomials in one vector.
        let polynomials: Vec<_> = index_pk
            .index
            .iter()
            .chain(prover_first_oracles.iter())
            .chain(prover_second_oracles.iter())
            .chain(prover_third_oracles.iter())
            .collect();

        // Gather commitments in one vector.
        #[rustfmt::skip]
        let commitments = vec![
            first_comms.iter().map(|p| p.commitment().clone()).collect(),
            second_comms.iter().map(|p| p.commitment().clone()).collect(),
            third_comms.iter().map(|p| p.commitment().clone()).collect(),
        ];
        let labeled_comms: Vec<_> = index_pk
            .index_vk
            .iter()
            .cloned()
            .zip(&AHPForR1CS::<F>::INDEXER_POLYNOMIALS)
            .map(|(c, l)| LabeledCommitment::new(l.to_string(), c, None))
            .chain(first_comms.iter().cloned())
            .chain(second_comms.iter().cloned())
            .chain(third_comms.iter().cloned())
            .collect();

        // Gather commitment randomness together.
        let comm_rands: Vec<PC::Randomness> = index_pk
            .index_comm_rands
            .clone()
            .into_iter()
            .chain(first_comm_rands)
            .chain(second_comm_rands)
            .chain(third_comm_rands)
            .collect();

        // Compute the AHP verifier's query set.
        let (query_set, verifier_state) =
            AHPForR1CS::verifier_query_set(verifier_state, &mut fs_rng);
        let lc_s = AHPForR1CS::construct_linear_combinations(
            &public_input,
            &polynomials,
            &verifier_state,
        )?;

        let eval_time = start_timer!(|| "Evaluating linear combinations over query set");
        let mut evaluations = Vec::new();
        for (label, (_, point)) in &query_set {
            let lc = lc_s
                .iter()
                .find(|lc| &lc.label == label)
                .ok_or(ahp::Error::MissingEval(label.to_string()))?;
            let eval = polynomials.get_lc_eval(&lc, *point)?;
            if !AHPForR1CS::<F>::LC_WITH_ZERO_EVAL.contains(&lc.label.as_ref()) {
                evaluations.push((label.to_string(), eval));
            }
        }

        evaluations.sort_by(|a, b| a.0.cmp(&b.0));
        let evaluations = evaluations.into_iter().map(|x| x.1).collect::<Vec<F>>();
        end_timer!(eval_time);

        fs_rng.absorb(&evaluations);
        let opening_challenge: F = u128::rand(&mut fs_rng).into();

        let pc_proof = PC::open_combinations(
            &index_pk.committer_key,
            &lc_s,
            polynomials,
            &labeled_comms,
            &query_set,
            opening_challenge,
            &comm_rands,
            Some(zk_rng),
        )
        .map_err(Error::from_pc_err)?;

        // Gather prover messages together.
        let prover_messages = vec![prover_first_msg, prover_second_msg, prover_third_msg];

        let proof = Proof::new(commitments, evaluations, prover_messages, pc_proof);
        proof.print_size_info();
        end_timer!(prover_time);
        Ok(proof)
    }

    /// Verify that a proof for the constrain system defined by `C` asserts that
    /// all constraints are satisfied.
    pub fn verify<R: RngCore>(
        index_vk: &IndexVerifierKey<F, PC>,
        public_input: &[F],
        proof: &Proof<F, PC>,
        rng: &mut R,
    ) -> Result<bool, Error<PC::Error>> {
        let verifier_time = start_timer!(|| "Marlin::Verify");

        let public_input = {
            let domain_x = GeneralEvaluationDomain::<F>::new(public_input.len() + 1).unwrap();

            let mut unpadded_input = public_input.to_vec();
            unpadded_input.resize(
                core::cmp::max(public_input.len(), domain_x.size() - 1),
                F::zero(),
            );

            unpadded_input
        };

        let mut fs_rng = FiatShamirRng::<D>::from_seed(
            &to_bytes![&Self::PROTOCOL_NAME, &index_vk, &public_input].unwrap(),
        );

        // --------------------------------------------------------------------
        // First round

        let first_comms = &proof.commitments[0];
        fs_rng.absorb(&to_bytes![first_comms, proof.prover_messages[0]].unwrap());

        let (_, verifier_state) =
            AHPForR1CS::verifier_first_round(index_vk.index_info, &mut fs_rng)?;
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Second round
        let second_comms = &proof.commitments[1];
        fs_rng.absorb(&to_bytes![second_comms, proof.prover_messages[1]].unwrap());

        let (_, verifier_state) = AHPForR1CS::verifier_second_round(verifier_state, &mut fs_rng);
        // --------------------------------------------------------------------

        // --------------------------------------------------------------------
        // Third round
        let third_comms = &proof.commitments[2];
        fs_rng.absorb(&to_bytes![third_comms, proof.prover_messages[2]].unwrap());

        let verifier_state = AHPForR1CS::verifier_third_round(verifier_state, &mut fs_rng);
        // --------------------------------------------------------------------

        // Collect degree bounds for commitments. Indexed polynomials have *no*
        // degree bounds because we know the committed index polynomial has the
        // correct degree.
        let index_info = index_vk.index_info;
        let degree_bounds = vec![None; index_vk.index_comms.len()]
            .into_iter()
            .chain(AHPForR1CS::prover_first_round_degree_bounds(&index_info))
            .chain(AHPForR1CS::prover_second_round_degree_bounds(&index_info))
            .chain(AHPForR1CS::prover_third_round_degree_bounds(&index_info))
            .collect::<Vec<_>>();

        // Gather commitments in one vector.
        let commitments: Vec<_> = index_vk
            .iter()
            .chain(first_comms)
            .chain(second_comms)
            .chain(third_comms)
            .cloned()
            .zip(AHPForR1CS::<F>::polynomial_labels())
            .zip(degree_bounds)
            .map(|((c, l), d)| LabeledCommitment::new(l, c, d))
            .collect();

        let (query_set, verifier_state) =
            AHPForR1CS::verifier_query_set(verifier_state, &mut fs_rng);

        fs_rng.absorb(&proof.evaluations);
        let opening_challenge: F = u128::rand(&mut fs_rng).into();

        let mut evaluations = Evaluations::new();
        let mut evaluation_labels = Vec::new();
        for (poly_label, (_, point)) in query_set.iter().cloned() {
            if AHPForR1CS::<F>::LC_WITH_ZERO_EVAL.contains(&poly_label.as_ref()) {
                evaluations.insert((poly_label, point), F::zero());
            } else {
                evaluation_labels.push((poly_label, point));
            }
        }
        evaluation_labels.sort_by(|a, b| a.0.cmp(&b.0));
        for (q, eval) in evaluation_labels.into_iter().zip(&proof.evaluations) {
            evaluations.insert(q, *eval);
        }

        let lc_s = AHPForR1CS::construct_linear_combinations(
            &public_input,
            &evaluations,
            &verifier_state,
        )?;

        let evaluations_are_correct = PC::check_combinations(
            &index_vk.verifier_key,
            &lc_s,
            &commitments,
            &query_set,
            &evaluations,
            &proof.pc_proof,
            opening_challenge,
            rng,
        )
        .map_err(Error::from_pc_err)?;

        if !evaluations_are_correct {
            eprintln!("PC::Check failed");
        }
        end_timer!(verifier_time, || format!(
            " PC::Check for AHP Verifier linear equations: {}",
            evaluations_are_correct
        ));
        Ok(evaluations_are_correct)
    }
}