1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
use ark_ec::{msm::FixedBaseMSM, PairingEngine, ProjectiveCurve};
use ark_ff::{Field, One, PrimeField, UniformRand, Zero};
use ark_poly::{EvaluationDomain, GeneralEvaluationDomain};
use ark_relations::r1cs::{
    ConstraintSynthesizer, ConstraintSystem, OptimizationGoal, Result as R1CSResult,
    SynthesisError, SynthesisMode,
};
use ark_std::{cfg_into_iter, cfg_iter, vec::Vec};

use ark_std::rand::Rng;
#[cfg(feature = "parallel")]
use rayon::prelude::*;

use crate::{r1cs_to_sap::R1CStoSAP, ProvingKey, VerifyingKey};

/// Generates a random common reference string for
/// a circuit.
#[inline]
pub fn generate_random_parameters<E, C, R>(circuit: C, rng: &mut R) -> R1CSResult<ProvingKey<E>>
where
    E: PairingEngine,
    C: ConstraintSynthesizer<E::Fr>,
    R: Rng,
{
    let alpha = E::Fr::rand(rng);
    let beta = E::Fr::rand(rng);
    let gamma = E::Fr::one();
    let g = E::G1Projective::rand(rng);
    let h = E::G2Projective::rand(rng);

    generate_parameters::<E, C, R>(circuit, alpha, beta, gamma, g, h, rng)
}

/// Create parameters for a circuit, given some toxic waste.
pub fn generate_parameters<E, C, R>(
    circuit: C,
    alpha: E::Fr,
    beta: E::Fr,
    gamma: E::Fr,
    g: E::G1Projective,
    h: E::G2Projective,
    rng: &mut R,
) -> R1CSResult<ProvingKey<E>>
where
    E: PairingEngine,
    C: ConstraintSynthesizer<E::Fr>,
    R: Rng,
{
    type D<F> = GeneralEvaluationDomain<F>;

    let setup_time = start_timer!(|| "GrothMaller17::Generator");
    let cs = ConstraintSystem::new_ref();
    cs.set_optimization_goal(OptimizationGoal::Constraints);
    cs.set_mode(SynthesisMode::Setup);

    // Synthesize the circuit.
    let synthesis_time = start_timer!(|| "Constraint synthesis");
    circuit.generate_constraints(cs.clone())?;
    end_timer!(synthesis_time);

    let lc_time = start_timer!(|| "Inlining LCs");
    cs.finalize();
    end_timer!(lc_time);

    let num_inputs = cs.num_instance_variables();
    let num_constraints = cs.num_constraints();

    ///////////////////////////////////////////////////////////////////////////
    let domain_time = start_timer!(|| "Constructing evaluation domain");

    let domain_size = 2 * num_constraints + 2 * num_inputs - 1;
    let domain = D::new(domain_size).ok_or(SynthesisError::PolynomialDegreeTooLarge)?;
    let t = domain.sample_element_outside_domain(rng);

    end_timer!(domain_time);
    ///////////////////////////////////////////////////////////////////////////

    let reduction_time = start_timer!(|| "R1CS to SAP Instance Map with Evaluation");
    let (a, c, zt, sap_num_variables, m_raw) =
        R1CStoSAP::instance_map_with_evaluation::<E::Fr, D<E::Fr>>(cs.clone(), &t)?;
    end_timer!(reduction_time);
    drop(cs);

    // Compute query densities
    let non_zero_a = cfg_into_iter!(0..sap_num_variables)
        .map(|i| (!a[i].is_zero()) as usize)
        .sum();
    let scalar_bits = E::Fr::size_in_bits();

    // Compute G window table
    let g_window_time = start_timer!(|| "Compute G window table");
    let g_window = FixedBaseMSM::get_mul_window_size(
        // Verifier query
        num_inputs
        // A query
        + non_zero_a
        // C query 1
        + (sap_num_variables - (num_inputs - 1))
        // C query 2
        + sap_num_variables + 1
        // G gamma2 Z t
        + m_raw + 1,
    );
    let g_table = FixedBaseMSM::get_window_table::<E::G1Projective>(scalar_bits, g_window, g);
    end_timer!(g_window_time);

    // Generate the R1CS proving key
    let proving_key_time = start_timer!(|| "Generate the R1CS proving key");

    // Compute the A-query
    let a_time = start_timer!(|| "Calculate A");
    let a_query = FixedBaseMSM::multi_scalar_mul::<E::G1Projective>(
        scalar_bits,
        g_window,
        &g_table,
        &cfg_iter!(a).map(|a| *a * &gamma).collect::<Vec<_>>(),
    );
    end_timer!(a_time);

    // Compute the G_gamma-query
    let g_gamma_time = start_timer!(|| "Calculate G gamma");
    let gamma_z = zt * &gamma;
    let alpha_beta = alpha + &beta;
    let ab_gamma_z = alpha_beta * &gamma * &zt;
    let g_gamma = g.mul(gamma.into());
    let g_gamma_z = g.mul(gamma_z.into());
    let h_gamma = h.mul(gamma.into());
    let h_gamma_z = h_gamma.mul(zt.into());
    let g_ab_gamma_z = g.mul(ab_gamma_z.into());
    let g_gamma2_z2 = g.mul(gamma_z.square().into());

    // Compute the vector G_gamma2_z_t := Z(t) * t^i * gamma^2 * G
    let gamma2_z_t = gamma_z * &gamma;
    let g_gamma2_z_t = FixedBaseMSM::multi_scalar_mul::<E::G1Projective>(
        scalar_bits,
        g_window,
        &g_table,
        &cfg_into_iter!(0..m_raw + 1)
            .map(|i| gamma2_z_t * &(t.pow([i as u64])))
            .collect::<Vec<_>>(),
    );
    end_timer!(g_gamma_time);

    // Compute the C_1-query
    let c1_time = start_timer!(|| "Calculate C1");
    let result = FixedBaseMSM::multi_scalar_mul::<E::G1Projective>(
        scalar_bits,
        g_window,
        &g_table,
        &cfg_into_iter!(0..sap_num_variables + 1)
            .map(|i| c[i] * &gamma + &(a[i] * &alpha_beta))
            .collect::<Vec<_>>(),
    );
    let (verifier_query, c_query_1) = result.split_at(num_inputs);
    end_timer!(c1_time);

    // Compute the C_2-query
    let c2_time = start_timer!(|| "Calculate C2");
    let double_gamma2_z = (zt * &gamma.square()).double();
    let c_query_2 = FixedBaseMSM::multi_scalar_mul::<E::G1Projective>(
        scalar_bits,
        g_window,
        &g_table,
        &cfg_into_iter!(0..sap_num_variables + 1)
            .map(|i| a[i] * &double_gamma2_z)
            .collect::<Vec<_>>(),
    );
    drop(g_table);
    end_timer!(c2_time);

    // Compute H_gamma window table
    let h_gamma_time = start_timer!(|| "Compute H table");
    let h_gamma_window = FixedBaseMSM::get_mul_window_size(non_zero_a);
    let h_gamma_table =
        FixedBaseMSM::get_window_table::<E::G2Projective>(scalar_bits, h_gamma_window, h_gamma);
    end_timer!(h_gamma_time);

    // Compute the B-query
    let b_time = start_timer!(|| "Calculate B");
    let b_query = FixedBaseMSM::multi_scalar_mul::<E::G2Projective>(
        scalar_bits,
        h_gamma_window,
        &h_gamma_table,
        &a,
    );
    drop(h_gamma_table);
    end_timer!(b_time);

    end_timer!(proving_key_time);

    // Generate R1CS verification key
    let verifying_key_time = start_timer!(|| "Generate the R1CS verification key");
    let g_alpha = g.mul(alpha.into());
    let h_beta = h.mul(beta.into());
    end_timer!(verifying_key_time);

    let vk = VerifyingKey::<E> {
        h_g2: h.into_affine(),
        g_alpha_g1: g_alpha.into_affine(),
        h_beta_g2: h_beta.into_affine(),
        g_gamma_g1: g_gamma.into_affine(),
        h_gamma_g2: h_gamma.into_affine(),
        query: E::G1Projective::batch_normalization_into_affine(&verifier_query),
    };

    let batch_normalization_time = start_timer!(|| "Convert proving key elements to affine");
    let a_query = E::G1Projective::batch_normalization_into_affine(&a_query);
    let b_query = E::G2Projective::batch_normalization_into_affine(&b_query);
    let c_query_1 = E::G1Projective::batch_normalization_into_affine(&c_query_1);
    let c_query_2 = E::G1Projective::batch_normalization_into_affine(&c_query_2);
    let g_gamma2_z_t = E::G1Projective::batch_normalization_into_affine(&g_gamma2_z_t);
    end_timer!(batch_normalization_time);

    end_timer!(setup_time);

    Ok(ProvingKey {
        vk,
        a_query,
        b_query,
        c_query_1,
        c_query_2,
        g_gamma_z: g_gamma_z.into_affine(),
        h_gamma_z: h_gamma_z.into_affine(),
        g_ab_gamma_z: g_ab_gamma_z.into_affine(),
        g_gamma2_z2: g_gamma2_z2.into_affine(),
        g_gamma2_z_t,
    })
}