1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
/// This modular multiplication algorithm uses Montgomery
/// reduction for efficient implementation. It also additionally
/// uses the "no-carry optimization" outlined
/// [here](https://hackmd.io/@zkteam/modular_multiplication) if
/// `P::MODULUS` has (a) a non-zero MSB, and (b) at least one
/// zero bit in the rest of the modulus.
macro_rules! impl_field_mul_assign {
    ($limbs:expr) => {
        #[inline]
        #[ark_ff_asm::unroll_for_loops]
        fn mul_assign(&mut self, other: &Self) {
            // Checking the modulus at compile time
            let first_bit_set = P::MODULUS.0[$limbs - 1] >> 63 != 0;
            // $limbs can be 1, hence we can run into a case with an unused mut.
            #[allow(unused_mut)]
            let mut all_bits_set = P::MODULUS.0[$limbs - 1] == !0 - (1 << 63);
            for i in 1..$limbs {
                all_bits_set &= P::MODULUS.0[$limbs - i - 1] == !0u64;
            }
            let _no_carry: bool = !(first_bit_set || all_bits_set);

            // No-carry optimisation applied to CIOS
            if _no_carry {
                #[cfg(use_asm)]
                #[allow(unsafe_code, unused_mut)]
                {
                    // Tentatively avoid using assembly for `$limbs == 1`.
                    if $limbs <= 6 && $limbs > 1 {
                        ark_ff_asm::x86_64_asm_mul!($limbs, (self.0).0, (other.0).0);
                        self.reduce();
                        return;
                    }
                }
                let mut r = [0u64; $limbs];
                let mut carry1 = 0u64;
                let mut carry2 = 0u64;

                for i in 0..$limbs {
                    r[0] = fa::mac(r[0], (self.0).0[0], (other.0).0[i], &mut carry1);
                    let k = r[0].wrapping_mul(P::INV);
                    fa::mac_discard(r[0], k, P::MODULUS.0[0], &mut carry2);
                    for j in 1..$limbs {
                        r[j] = mac_with_carry!(r[j], (self.0).0[j], (other.0).0[i], &mut carry1);
                        r[j - 1] = mac_with_carry!(r[j], k, P::MODULUS.0[j], &mut carry2);
                    }
                    r[$limbs - 1] = carry1 + carry2;
                }
                (self.0).0 = r;
                self.reduce();
            // Alternative implementation
            } else {
                *self = self.mul_without_reduce(other, P::MODULUS, P::INV);
                self.reduce();
            }
        }
    };
}

macro_rules! impl_field_into_repr {
    ($limbs:expr, $BigIntegerType:ty) => {
        #[inline]
        #[ark_ff_asm::unroll_for_loops]
        fn into_repr(&self) -> $BigIntegerType {
            let mut tmp = self.0;
            let mut r = tmp.0;
            // Montgomery Reduction
            for i in 0..$limbs {
                let k = r[i].wrapping_mul(P::INV);
                let mut carry = 0;

                mac_with_carry!(r[i], k, P::MODULUS.0[0], &mut carry);
                for j in 1..$limbs {
                    r[(j + i) % $limbs] =
                        mac_with_carry!(r[(j + i) % $limbs], k, P::MODULUS.0[j], &mut carry);
                }
                r[i % $limbs] = carry;
            }
            tmp.0 = r;
            tmp
        }
    };
}

macro_rules! impl_field_square_in_place {
    ($limbs: expr) => {
        #[inline]
        #[ark_ff_asm::unroll_for_loops]
        #[allow(unused_braces, clippy::absurd_extreme_comparisons)]
        fn square_in_place(&mut self) -> &mut Self {
            if $limbs == 1 {
                // We default to multiplying with `self` using the `Mul` impl
                // for the 1 limb case
                *self = *self * *self;
                return self;
            }
            #[cfg(use_asm)]
            #[allow(unsafe_code, unused_mut)]
            {
                // Checking the modulus at compile time
                let first_bit_set = P::MODULUS.0[$limbs - 1] >> 63 != 0;
                let mut all_bits_set = P::MODULUS.0[$limbs - 1] == !0 - (1 << 63);
                for i in 1..$limbs {
                    all_bits_set &= P::MODULUS.0[$limbs - i - 1] == core::u64::MAX;
                }
                let _no_carry: bool = !(first_bit_set || all_bits_set);

                if $limbs <= 6 && _no_carry {
                    ark_ff_asm::x86_64_asm_square!($limbs, (self.0).0);
                    self.reduce();
                    return self;
                }
            }
            let mut r = [0u64; $limbs * 2];

            let mut carry = 0;
            for i in 0..$limbs {
                if i < $limbs - 1 {
                    for j in 0..$limbs {
                        if j > i {
                            r[i + j] =
                                mac_with_carry!(r[i + j], (self.0).0[i], (self.0).0[j], &mut carry);
                        }
                    }
                    r[$limbs + i] = carry;
                    carry = 0;
                }
            }
            r[$limbs * 2 - 1] = r[$limbs * 2 - 2] >> 63;
            for i in 0..$limbs {
                // This computes `r[2 * ($limbs - 1) - (i + 1)]`, but additionally
                // handles the case where the index underflows.
                // Note that we should never hit this case because it only occurs
                // when `$limbs == 1`, but we handle that separately above.
                let subtractor = (2 * ($limbs - 1usize))
                    .checked_sub(i + 1)
                    .map(|index| r[index])
                    .unwrap_or(0);
                r[2 * ($limbs - 1) - i] = (r[2 * ($limbs - 1) - i] << 1) | (subtractor >> 63);
            }
            for i in 3..$limbs {
                r[$limbs + 1 - i] = (r[$limbs + 1 - i] << 1) | (r[$limbs - i] >> 63);
            }
            r[1] <<= 1;

            for i in 0..$limbs {
                r[2 * i] = mac_with_carry!(r[2 * i], (self.0).0[i], (self.0).0[i], &mut carry);
                // need unused assignment because the last iteration of the loop produces an
                // assignment to `carry` that is unused.
                #[allow(unused_assignments)]
                {
                    r[2 * i + 1] = adc!(r[2 * i + 1], 0, &mut carry);
                }
            }
            // Montgomery reduction
            let mut _carry2 = 0;
            for i in 0..$limbs {
                let k = r[i].wrapping_mul(P::INV);
                let mut carry = 0;
                mac_with_carry!(r[i], k, P::MODULUS.0[0], &mut carry);
                for j in 1..$limbs {
                    r[j + i] = mac_with_carry!(r[j + i], k, P::MODULUS.0[j], &mut carry);
                }
                r[$limbs + i] = adc!(r[$limbs + i], _carry2, &mut carry);
                _carry2 = carry;
            }
            (self.0).0.copy_from_slice(&r[$limbs..]);
            self.reduce();
            self
        }
    };
}

macro_rules! impl_field_bigint_conv {
    ($field: ident, $bigint: ident, $params: ident) => {
        impl<P: $params> Into<$bigint> for $field<P> {
            fn into(self) -> $bigint {
                self.into_repr()
            }
        }

        impl<P: $params> From<$bigint> for $field<P> {
            /// Converts `Self::BigInteger` into `Self`
            ///
            /// # Panics
            /// This method panics if `int` is larger than `P::MODULUS`.
            fn from(int: $bigint) -> Self {
                Self::from_repr(int).unwrap()
            }
        }
    };
}

macro_rules! impl_prime_field_standard_sample {
    ($field: ident, $params: ident) => {
        impl<P: $params> ark_std::rand::distributions::Distribution<$field<P>>
            for ark_std::rand::distributions::Standard
        {
            #[inline]
            fn sample<R: ark_std::rand::Rng + ?Sized>(&self, rng: &mut R) -> $field<P> {
                loop {
                    let mut tmp = $field(
                        rng.sample(ark_std::rand::distributions::Standard),
                        PhantomData,
                    );
                    // Mask away the unused bits at the beginning.
                    tmp.0
                        .as_mut()
                        .last_mut()
                        .map(|val| *val &= core::u64::MAX >> P::REPR_SHAVE_BITS);

                    if tmp.is_valid() {
                        return tmp;
                    }
                }
            }
        }
    };
}

macro_rules! impl_prime_field_from_int {
    ($field: ident, u128, $params: ident, $limbs:expr) => {
        impl<P: $params> From<u128> for $field<P> {
            fn from(other: u128) -> Self {
                let mut default_int = P::BigInt::default();
                if $limbs == 1 {
                    default_int.0[0] = (other % u128::from(P::MODULUS.0[0])) as u64;
                } else {
                    let upper = (other >> 64) as u64;
                    let lower = ((other << 64) >> 64) as u64;
                    // This is equivalent to the following, but satisfying the compiler:
                    // default_int.0[0] = lower;
                    // default_int.0[1] = upper;
                    let limbs = [lower, upper];
                    for (cur, other) in default_int.0.iter_mut().zip(&limbs) {
                        *cur = *other;
                    }
                }
                Self::from_repr(default_int).unwrap()
            }
        }
    };
    ($field: ident, $int: ident, $params: ident, $limbs:expr) => {
        impl<P: $params> From<$int> for $field<P> {
            fn from(other: $int) -> Self {
                if $limbs == 1 {
                    Self::from_repr(P::BigInt::from(u64::from(other) % P::MODULUS.0[0])).unwrap()
                } else {
                    Self::from_repr(P::BigInt::from(u64::from(other))).unwrap()
                }
            }
        }
    };
}

macro_rules! sqrt_impl {
    ($Self:ident, $P:tt, $self:expr) => {{
        // https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
        // Actually this is just normal Tonelli-Shanks; since `P::Generator`
        // is a quadratic non-residue, `P::ROOT_OF_UNITY = P::GENERATOR ^ t`
        // is also a quadratic non-residue (since `t` is odd).
        if $self.is_zero() {
            return Some($Self::zero());
        }
        // Try computing the square root (x at the end of the algorithm)
        // Check at the end of the algorithm if x was a square root
        // Begin Tonelli-Shanks
        let mut z = $Self::qnr_to_t();
        let mut w = $self.pow($P::T_MINUS_ONE_DIV_TWO);
        let mut x = w * $self;
        let mut b = x * &w;

        let mut v = $P::TWO_ADICITY as usize;

        while !b.is_one() {
            let mut k = 0usize;

            let mut b2k = b;
            while !b2k.is_one() {
                // invariant: b2k = b^(2^k) after entering this loop
                b2k.square_in_place();
                k += 1;
            }

            if k == ($P::TWO_ADICITY as usize) {
                // We are in the case where self^(T * 2^k) = x^(P::MODULUS - 1) = 1,
                // which means that no square root exists.
                return None;
            }
            let j = v - k;
            w = z;
            for _ in 1..j {
                w.square_in_place();
            }

            z = w.square();
            b *= &z;
            x *= &w;
            v = k;
        }
        // Is x the square root? If so, return it.
        if (x.square() == *$self) {
            return Some(x);
        } else {
            // Consistency check that if no square root is found,
            // it is because none exists.
            #[cfg(debug_assertions)]
            {
                use crate::fields::LegendreSymbol::*;
                if ($self.legendre() != QuadraticNonResidue) {
                    panic!("Input has a square root per its legendre symbol, but it was not found")
                }
            }
            None
        }
    }};
}

// Implements AddAssign on Self by deferring to an implementation on &Self
#[macro_export]
macro_rules! impl_additive_ops_from_ref {
    ($type: ident, $params: ident) => {
        #[allow(unused_qualifications)]
        impl<P: $params> core::ops::Add<Self> for $type<P> {
            type Output = Self;

            #[inline]
            fn add(self, other: Self) -> Self {
                let mut result = self;
                result.add_assign(&other);
                result
            }
        }

        #[allow(unused_qualifications)]
        impl<'a, P: $params> core::ops::Add<&'a mut Self> for $type<P> {
            type Output = Self;

            #[inline]
            fn add(self, other: &'a mut Self) -> Self {
                let mut result = self;
                result.add_assign(&*other);
                result
            }
        }

        #[allow(unused_qualifications)]
        impl<P: $params> core::ops::Sub<Self> for $type<P> {
            type Output = Self;

            #[inline]
            fn sub(self, other: Self) -> Self {
                let mut result = self;
                result.sub_assign(&other);
                result
            }
        }

        #[allow(unused_qualifications)]
        impl<'a, P: $params> core::ops::Sub<&'a mut Self> for $type<P> {
            type Output = Self;

            #[inline]
            fn sub(self, other: &'a mut Self) -> Self {
                let mut result = self;
                result.sub_assign(&*other);
                result
            }
        }

        #[allow(unused_qualifications)]
        impl<P: $params> core::iter::Sum<Self> for $type<P> {
            fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
                iter.fold(Self::zero(), core::ops::Add::add)
            }
        }

        #[allow(unused_qualifications)]
        impl<'a, P: $params> core::iter::Sum<&'a Self> for $type<P> {
            fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
                iter.fold(Self::zero(), core::ops::Add::add)
            }
        }

        #[allow(unused_qualifications)]
        impl<P: $params> core::ops::AddAssign<Self> for $type<P> {
            fn add_assign(&mut self, other: Self) {
                self.add_assign(&other)
            }
        }

        #[allow(unused_qualifications)]
        impl<P: $params> core::ops::SubAssign<Self> for $type<P> {
            fn sub_assign(&mut self, other: Self) {
                self.sub_assign(&other)
            }
        }

        #[allow(unused_qualifications)]
        impl<'a, P: $params> core::ops::AddAssign<&'a mut Self> for $type<P> {
            fn add_assign(&mut self, other: &'a mut Self) {
                self.add_assign(&*other)
            }
        }

        #[allow(unused_qualifications)]
        impl<'a, P: $params> core::ops::SubAssign<&'a mut Self> for $type<P> {
            fn sub_assign(&mut self, other: &'a mut Self) {
                self.sub_assign(&*other)
            }
        }
    };
}

// Implements AddAssign on Self by deferring to an implementation on &Self
#[macro_export]
macro_rules! impl_multiplicative_ops_from_ref {
    ($type: ident, $params: ident) => {
        #[allow(unused_qualifications)]
        impl<P: $params> core::ops::Mul<Self> for $type<P> {
            type Output = Self;

            #[inline]
            fn mul(self, other: Self) -> Self {
                let mut result = self;
                result.mul_assign(&other);
                result
            }
        }

        #[allow(unused_qualifications)]
        impl<P: $params> core::ops::Div<Self> for $type<P> {
            type Output = Self;

            #[inline]
            fn div(self, other: Self) -> Self {
                let mut result = self;
                result.div_assign(&other);
                result
            }
        }

        #[allow(unused_qualifications)]
        impl<'a, P: $params> core::ops::Mul<&'a mut Self> for $type<P> {
            type Output = Self;

            #[inline]
            fn mul(self, other: &'a mut Self) -> Self {
                let mut result = self;
                result.mul_assign(&*other);
                result
            }
        }

        #[allow(unused_qualifications)]
        impl<'a, P: $params> core::ops::Div<&'a mut Self> for $type<P> {
            type Output = Self;

            #[inline]
            fn div(self, other: &'a mut Self) -> Self {
                let mut result = self;
                result.div_assign(&*other);
                result
            }
        }

        #[allow(unused_qualifications)]
        impl<P: $params> core::iter::Product<Self> for $type<P> {
            fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
                iter.fold(Self::one(), core::ops::Mul::mul)
            }
        }

        #[allow(unused_qualifications)]
        impl<'a, P: $params> core::iter::Product<&'a Self> for $type<P> {
            fn product<I: Iterator<Item = &'a Self>>(iter: I) -> Self {
                iter.fold(Self::one(), Mul::mul)
            }
        }

        #[allow(unused_qualifications)]
        impl<P: $params> core::ops::MulAssign<Self> for $type<P> {
            fn mul_assign(&mut self, other: Self) {
                self.mul_assign(&other)
            }
        }

        #[allow(unused_qualifications)]
        impl<'a, P: $params> core::ops::DivAssign<&'a mut Self> for $type<P> {
            fn div_assign(&mut self, other: &'a mut Self) {
                self.div_assign(&*other)
            }
        }

        #[allow(unused_qualifications)]
        impl<'a, P: $params> core::ops::MulAssign<&'a mut Self> for $type<P> {
            fn mul_assign(&mut self, other: &'a mut Self) {
                self.mul_assign(&*other)
            }
        }

        #[allow(unused_qualifications)]
        impl<P: $params> core::ops::DivAssign<Self> for $type<P> {
            fn div_assign(&mut self, other: Self) {
                self.div_assign(&other)
            }
        }
    };
}