1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
//! Parser for arithmetic expressions with flexible definition of literals and support
//! of type annotations.
//!
//! Overall, parsed grammars are similar to Rust syntax,
//! [with a few notable differences](#differences-with-rust).
//!
//! # Supported syntax features
//!
//! - **Variables.** A variable name is defined similar to Rust and other programming languages,
//!   as a sequence of alphanumeric chars and underscores that does not start with a digit.
//! - **Literals.** The parser for literals is user-provided, thus allowing to apply the library
//!   to different domains (e.g., finite group arithmetic).
//! - `//` and `/* .. */` **comments**.
//! - Basic **arithmetic operations**: `+`, `-` (binary and unary), `*`, `/`, `^` (power).
//!   The parser outputs AST with nodes organized according to the operation priority.
//! - **Function calls**: `foo(1.0, x)`.
//! - **Parentheses** which predictably influence operation priority.
//!
//! The parser supports both complete and streaming (incomplete) modes; the latter is useful
//! for REPLs and similar applications.
//!
//! ## Optional syntax features
//!
//! These features can be switched on or off when defining a [`Parse`](grammars::Parse) impl
//! by declaring the corresponding [`Features`](grammars::Features).
//!
//! - **Tuples.** A tuple is two or more elements separated by commas, such as `(x, y)`
//!   or `(1, 2 * x)`. Tuples are parsed both as lvalues and rvalues.
//! - **Tuple destructuring.** Using a tuple as an lvalue, for example, `(x, y, z) = foo`.
//!   The "rest" syntax is also supported, either named or unnamed: `(head, ...tail) = foo`,
//!   `(a, ..., b, c) = foo`.
//! - **Function definitions.** A definition looks like a closure definition in Rust, e.g.,
//!   `|x| x - 10` or `|x, y| { z = max(x, y); (z - x, z - y) }`. A definition may be
//!   assigned to a variable (which is the way to define named functions).
//! - **Destructuring for function args.** Similar to tuple destructuring, it is possible to
//!   destructure and group args in function definitions, for example, `|(x, y), ...zs| { }`.
//! - **Blocks.** A block is several `;`-delimited statements enclosed in `{}` braces,
//!   e.g, `{ z = max(x, y); (z - x, z - y) }`. The blocks can be used in all contexts
//!   instead of a simple expression; for example, `min({ z = 5; z - 1 }, 3)`.
//! - **Objects.** Object is a mapping of string fields to values. Objects are defined via
//!   *object expressions*, which look similar to struct initialization in Rust or object
//!   initialization in JavaScript; for example, `#{ x: 1, y }`. (Note the `#` char at the start
//!   of the block; it is used to distinguish object expressions from blocks.)
//! - **Methods.** Method call is a function call separated from the receiver with a `.` char;
//!   for example, `foo.bar(2, x)`.
//! - **Type annotations.** A type annotation in the form `var: Type` can be present
//!   in the lvalues or in the function argument definitions. The parser for type annotations
//!   is user-defined.
//! - **Boolean operations**: `==`, `!=`, `&&`, `||`, `!`.
//! - **Order comparisons,** that is, `>`, `<`, `>=`, and `<=` boolean ops.
//!
//! ## Differences with Rust
//!
//! *(within shared syntax constructs; of course, Rust is much more expressive)*
//!
//! - No keyword for assigning a variable (i.e., no `let` / `let mut`). There are no
//!   keywords in general.
//! - Functions are only defined via the closure syntax.
//! - There is "rest" destructuting for tuples and function arguments.
//! - Type annotations are placed within tuple elements, for example, `(x: Num, _) = y`.
//! - Object expressions are enclosed in `#{ ... }`, similarly to [Rhai](https://rhai.rs/).
//!
//! # Crate features
//!
//! - `std`. Enables support of types from `std`, such as the `Error` trait, and propagates
//!   to dependencies.
//! - `num-complex`. Implements [`NumLiteral`](crate::grammars::NumLiteral) for floating-point
//!   complex numbers (`Complex32` and `Complex64`).
//! - `num-bigint`. Implements [`NumLiteral`](crate::grammars::NumLiteral) for `BigInt` and
//!   `BigUint` from the `num-bigint` crate.
//!
//! # Examples
//!
//! Using a grammar for arithmetic on real values.
//!
//! ```
//! # use assert_matches::assert_matches;
//! use arithmetic_parser::{
//!     grammars::{F32Grammar, Parse, Untyped},
//!     NomResult, Statement, Expr, FnDefinition, LvalueLen,
//! };
//!
//! const PROGRAM: &str = r#"
//!     // This is a comment.
//!     x = 1 + 2.5 * 3 + sin(a^3 / b^2 /* another comment */);
//!     // Function declarations have syntax similar to Rust closures.
//!     some_function = |a, b| (a + b, a - b);
//!     other_function = |x| {
//!         r = min(rand(), 0.5);
//!         r * x
//!     };
//!     // Tuples and blocks are supported and have a similar syntax to Rust.
//!     (y, z) = some_function({ x = x - 0.5; x }, x);
//!     other_function(y - z)
//! "#;
//!
//! # fn main() -> anyhow::Result<()> {
//! let block = Untyped::<F32Grammar>::parse_statements(PROGRAM)?;
//! // First statement is an assignment.
//! assert_matches!(
//!     block.statements[0].extra,
//!     Statement::Assignment { ref lhs, .. } if *lhs.fragment() == "x"
//! );
//! // The RHS of the second statement is a function.
//! let some_function = match &block.statements[1].extra {
//!     Statement::Assignment { rhs, .. } => &rhs.extra,
//!     _ => panic!("Unexpected parsing result"),
//! };
//! // This function has a single argument and a single statement in the body.
//! assert_matches!(
//!     some_function,
//!     Expr::FnDefinition(FnDefinition { ref args, ref body, .. })
//!         if args.extra.len() == LvalueLen::Exact(2)
//!             && body.statements.is_empty()
//!             && body.return_value.is_some()
//! );
//! # Ok(())
//! # }
//! ```

#![cfg_attr(not(feature = "std"), no_std)]
#![doc(html_root_url = "https://docs.rs/arithmetic-parser/0.3.0")]
#![warn(missing_docs, missing_debug_implementations)]
#![warn(clippy::all, clippy::pedantic)]
#![allow(
    clippy::missing_errors_doc,
    clippy::must_use_candidate,
    clippy::module_name_repetitions
)]

// Polyfill for `alloc` types.
mod alloc {
    #[cfg(not(feature = "std"))]
    extern crate alloc;

    #[cfg(not(feature = "std"))]
    pub use alloc::{borrow::ToOwned, boxed::Box, format, string::String, vec, vec::Vec};
    #[cfg(feature = "std")]
    pub use std::{borrow::ToOwned, boxed::Box, format, string::String, vec, vec::Vec};
}

pub use crate::{
    error::{Context, Error, ErrorKind, SpannedError, UnsupportedType},
    ops::{BinaryOp, Op, OpPriority, UnaryOp},
    parser::is_valid_variable_name,
    spans::{
        with_span, CodeFragment, InputSpan, LocatedSpan, MaybeSpanned, NomResult, Spanned,
        StripCode, StripResultExt,
    },
};

use core::fmt;

use crate::{
    alloc::{vec, Box, Vec},
    grammars::Grammar,
};

mod error;
pub mod grammars;
mod ops;
mod parser;
mod spans;

/// Object expression, such as `#{ x, y: x + 2 }`.
#[derive(Debug)]
#[non_exhaustive]
pub struct ObjectExpr<'a, T: Grammar<'a>> {
    /// Fields. Each field is the field name and an optional expression (that is, parts
    /// before and after the colon char `:`, respectively).
    pub fields: Vec<(Spanned<'a>, Option<SpannedExpr<'a, T>>)>,
}

impl<'a, T: Grammar<'a>> Clone for ObjectExpr<'a, T> {
    fn clone(&self) -> Self {
        Self {
            fields: self.fields.clone(),
        }
    }
}

impl<'a, T: Grammar<'a>> PartialEq for ObjectExpr<'a, T> {
    fn eq(&self, other: &Self) -> bool {
        self.fields == other.fields
    }
}

/// Arithmetic expression with an abstract types for type annotations and literals.
#[derive(Debug)]
#[non_exhaustive]
pub enum Expr<'a, T: Grammar<'a>> {
    /// Variable use, e.g., `x`.
    Variable,

    /// Literal (semantic depends on `T`).
    Literal(T::Lit),

    /// Function definition, e.g., `|x, y| { x + y }`.
    FnDefinition(FnDefinition<'a, T>),

    /// Type cast, e.g., `x as Bool`.
    TypeCast {
        /// Value being cast, e.g., `x` in `x as Bool`.
        value: Box<SpannedExpr<'a, T>>,
        /// Type annotation for the case, e.g., `Bool` in `x as Bool`.
        ty: Spanned<'a, T::Type>,
    },

    /// Function call, e.g., `foo(x, y)` or `|x| { x + 5 }(3)`.
    Function {
        /// Function value. In the simplest case, this is a variable, but may also be another
        /// kind of expression, such as `|x| { x + 5 }` in `|x| { x + 5 }(3)`.
        name: Box<SpannedExpr<'a, T>>,
        /// Function arguments.
        args: Vec<SpannedExpr<'a, T>>,
    },

    /// Field access, e.g., `foo.bar`.
    FieldAccess {
        /// Name of the called method, e.g. `bar` in `foo.bar`.
        name: Spanned<'a>,
        /// Receiver of the call, e.g., `foo` in `foo.bar(x, 5)`.
        receiver: Box<SpannedExpr<'a, T>>,
    },

    /// Method call, e.g., `foo.bar(x, 5)`.
    Method {
        /// Name of the called method, e.g. `bar` in `foo.bar(x, 5)`.
        name: Spanned<'a>,
        /// Receiver of the call, e.g., `foo` in `foo.bar(x, 5)`.
        receiver: Box<SpannedExpr<'a, T>>,
        /// Arguments; e.g., `x, 5` in `foo.bar(x, 5)`.
        args: Vec<SpannedExpr<'a, T>>,
    },

    /// Unary operation, e.g., `-x`.
    Unary {
        /// Operator.
        op: Spanned<'a, UnaryOp>,
        /// Inner expression.
        inner: Box<SpannedExpr<'a, T>>,
    },

    /// Binary operation, e.g., `x + 1`.
    Binary {
        /// LHS of the operation.
        lhs: Box<SpannedExpr<'a, T>>,
        /// Operator.
        op: Spanned<'a, BinaryOp>,
        /// RHS of the operation.
        rhs: Box<SpannedExpr<'a, T>>,
    },

    /// Tuple expression, e.g., `(x, y + z)`.
    Tuple(Vec<SpannedExpr<'a, T>>),

    /// Block expression, e.g., `{ x = 3; x + y }`.
    Block(Block<'a, T>),

    /// Object expression, e.g., `#{ x, y: x + 2 }`.
    Object(ObjectExpr<'a, T>),
}

impl<'a, T: Grammar<'a>> Expr<'a, T> {
    /// Returns LHS of the binary expression. If this is not a binary expression, returns `None`.
    pub fn binary_lhs(&self) -> Option<&SpannedExpr<'a, T>> {
        match self {
            Expr::Binary { ref lhs, .. } => Some(lhs),
            _ => None,
        }
    }

    /// Returns RHS of the binary expression. If this is not a binary expression, returns `None`.
    pub fn binary_rhs(&self) -> Option<&SpannedExpr<'a, T>> {
        match self {
            Expr::Binary { ref rhs, .. } => Some(rhs),
            _ => None,
        }
    }

    /// Returns the type of this expression.
    pub fn ty(&self) -> ExprType {
        match self {
            Self::Variable => ExprType::Variable,
            Self::Literal(_) => ExprType::Literal,
            Self::FnDefinition(_) => ExprType::FnDefinition,
            Self::TypeCast { .. } => ExprType::Cast,
            Self::Tuple(_) => ExprType::Tuple,
            Self::Object(_) => ExprType::Object,
            Self::Block(_) => ExprType::Block,
            Self::Function { .. } => ExprType::Function,
            Self::FieldAccess { .. } => ExprType::FieldAccess,
            Self::Method { .. } => ExprType::Method,
            Self::Unary { .. } => ExprType::Unary,
            Self::Binary { .. } => ExprType::Binary,
        }
    }
}

impl<'a, T: Grammar<'a>> Clone for Expr<'a, T> {
    fn clone(&self) -> Self {
        match self {
            Self::Variable => Self::Variable,
            Self::Literal(lit) => Self::Literal(lit.clone()),
            Self::FnDefinition(function) => Self::FnDefinition(function.clone()),
            Self::TypeCast { value, ty } => Self::TypeCast {
                value: value.clone(),
                ty: ty.clone(),
            },
            Self::Tuple(tuple) => Self::Tuple(tuple.clone()),
            Self::Object(statements) => Self::Object(statements.clone()),
            Self::Block(block) => Self::Block(block.clone()),
            Self::Function { name, args } => Self::Function {
                name: name.clone(),
                args: args.clone(),
            },
            Self::FieldAccess { name, receiver } => Self::FieldAccess {
                name: *name,
                receiver: receiver.clone(),
            },
            Self::Method {
                name,
                receiver,
                args,
            } => Self::Method {
                name: *name,
                receiver: receiver.clone(),
                args: args.clone(),
            },
            Self::Unary { op, inner } => Self::Unary {
                op: *op,
                inner: inner.clone(),
            },
            Self::Binary { op, lhs, rhs } => Self::Binary {
                op: *op,
                lhs: lhs.clone(),
                rhs: rhs.clone(),
            },
        }
    }
}

impl<'a, T> PartialEq for Expr<'a, T>
where
    T: Grammar<'a>,
    T::Lit: PartialEq,
    T::Type: PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        match (self, other) {
            (Self::Variable, Self::Variable) => true,
            (Self::Literal(this), Self::Literal(that)) => this == that,
            (Self::FnDefinition(this), Self::FnDefinition(that)) => this == that,

            (
                Self::TypeCast { value, ty },
                Self::TypeCast {
                    value: other_value,
                    ty: other_ty,
                },
            ) => value == other_value && ty == other_ty,

            (Self::Tuple(this), Self::Tuple(that)) => this == that,
            (Self::Object(this), Self::Object(that)) => this == that,
            (Self::Block(this), Self::Block(that)) => this == that,

            (
                Self::Function { name, args },
                Self::Function {
                    name: that_name,
                    args: that_args,
                },
            ) => name == that_name && args == that_args,

            (
                Self::FieldAccess { name, receiver },
                Self::FieldAccess {
                    name: that_name,
                    receiver: that_receiver,
                },
            ) => name == that_name && receiver == that_receiver,

            (
                Self::Method {
                    name,
                    receiver,
                    args,
                },
                Self::Method {
                    name: that_name,
                    receiver: that_receiver,
                    args: that_args,
                },
            ) => name == that_name && receiver == that_receiver && args == that_args,

            (
                Self::Unary { op, inner },
                Self::Unary {
                    op: that_op,
                    inner: that_inner,
                },
            ) => op == that_op && inner == that_inner,

            (
                Self::Binary { lhs, op, rhs },
                Self::Binary {
                    lhs: that_lhs,
                    op: that_op,
                    rhs: that_rhs,
                },
            ) => op == that_op && lhs == that_lhs && rhs == that_rhs,

            _ => false,
        }
    }
}

/// `Expr` with the associated type and code span.
pub type SpannedExpr<'a, T> = Spanned<'a, Expr<'a, T>>;

/// Type of an `Expr`.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum ExprType {
    /// Variable use, e.g., `x`.
    Variable,
    /// Literal (semantic depends on the grammar).
    Literal,
    /// Function definition, e.g., `|x, y| { x + y }`.
    FnDefinition,
    /// Cast, e.g., `x as Bool`.
    Cast,
    /// Function call, e.g., `foo(x, y)` or `|x| { x + 5 }(3)`.
    Function,
    /// Field access, e.g., `foo.bar`.
    FieldAccess,
    /// Method call, e.g., `foo.bar(x, 5)`.
    Method,
    /// Unary operation, e.g., `-x`.
    Unary,
    /// Binary operation, e.g., `x + 1`.
    Binary,
    /// Tuple expression, e.g., `(x, y + z)`.
    Tuple,
    /// Object expression, e.g., `#{ x = 1; y = x + 2; }`.
    Object,
    /// Block expression, e.g., `{ x = 3; x + y }`.
    Block,
}

impl fmt::Display for ExprType {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter.write_str(match self {
            Self::Variable => "variable",
            Self::Literal => "literal",
            Self::FnDefinition => "function definition",
            Self::Cast => "type cast",
            Self::Function => "function call",
            Self::FieldAccess => "field access",
            Self::Method => "method call",
            Self::Unary => "unary operation",
            Self::Binary => "binary operation",
            Self::Tuple => "tuple",
            Self::Object => "object",
            Self::Block => "block",
        })
    }
}

/// Length of an assigned lvalue.
#[derive(Debug, Clone, Copy, PartialEq)]
#[non_exhaustive]
pub enum LvalueLen {
    /// Exact length.
    Exact(usize),
    /// Minimum length.
    AtLeast(usize),
}

impl LvalueLen {
    /// Checks if this length matches the provided length of the rvalue.
    pub fn matches(self, value: usize) -> bool {
        match self {
            Self::Exact(len) => value == len,
            Self::AtLeast(len) => value >= len,
        }
    }
}

impl fmt::Display for LvalueLen {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::Exact(len) => write!(formatter, "{}", len),
            Self::AtLeast(len) => write!(formatter, "at least {}", len),
        }
    }
}

impl From<usize> for LvalueLen {
    fn from(value: usize) -> Self {
        Self::Exact(value)
    }
}

/// Tuple destructuring, such as `(a, b, ..., c)`.
#[derive(Debug, Clone, PartialEq)]
pub struct Destructure<'a, T> {
    /// Start part of the destructuring, e.g, `a` and `b` in `(a, b, ..., c)`.
    pub start: Vec<SpannedLvalue<'a, T>>,
    /// Middle part of the destructuring, e.g., `rest` in `(a, b, ...rest, _)`.
    pub middle: Option<Spanned<'a, DestructureRest<'a, T>>>,
    /// End part of the destructuring, e.g., `c` in `(a, b, ..., c)`.
    pub end: Vec<SpannedLvalue<'a, T>>,
}

impl<T> Destructure<'_, T> {
    /// Returns the length of destructured elements.
    pub fn len(&self) -> LvalueLen {
        if self.middle.is_some() {
            LvalueLen::AtLeast(self.start.len() + self.end.len())
        } else {
            LvalueLen::Exact(self.start.len())
        }
    }

    /// Checks if the destructuring is empty.
    pub fn is_empty(&self) -> bool {
        self.start.is_empty()
    }
}

/// Rest syntax, such as `...rest` in `(a, ...rest, b)`.
#[derive(Debug, Clone, PartialEq)]
pub enum DestructureRest<'a, T> {
    /// Unnamed rest syntax, i.e., `...`.
    Unnamed,
    /// Named rest syntax, e.g., `...rest`.
    Named {
        /// Variable span, e.g., `rest`.
        variable: Spanned<'a>,
        /// Type annotation of the value.
        ty: Option<Spanned<'a, T>>,
    },
}

impl<'a, T> DestructureRest<'a, T> {
    /// Tries to convert this rest declaration into an lvalue. Return `None` if the rest declaration
    /// is unnamed.
    pub fn to_lvalue(&self) -> Option<SpannedLvalue<'a, T>> {
        match self {
            Self::Named { variable, .. } => {
                Some(variable.copy_with_extra(Lvalue::Variable { ty: None }))
            }
            _ => None,
        }
    }
}

/// Object destructuring, such as `{ x, y: new_y }`.
#[derive(Debug, Clone, PartialEq)]
#[non_exhaustive]
pub struct ObjectDestructure<'a, T> {
    /// Fields mentioned in the destructuring.
    pub fields: Vec<ObjectDestructureField<'a, T>>,
}

/// Single field in [`ObjectDestructure`], such as `x` and `y: new_y` in `{ x, y: new_y }`.
///
/// In addition to the "ordinary" `field: lvalue` syntax for a field with binding,
/// an alternative one is supported: `field -> lvalue`. This makes the case
/// of a field with type annotation easier to recognize (for humans); `field -> lvalue: Type` is
/// arguably more readable than `field: lvalue: Type` (although the latter is still valid syntax).
#[derive(Debug, Clone, PartialEq)]
pub struct ObjectDestructureField<'a, T> {
    /// Field name, such as `xs` in `xs: (x, ...tail)`.
    pub field_name: Spanned<'a>,
    /// Binding for the field, such as `(x, ...tail)` in `xs: (x, ...tail)`.
    pub binding: Option<SpannedLvalue<'a, T>>,
}

/// Assignable value.
#[derive(Debug, Clone, PartialEq)]
#[non_exhaustive]
pub enum Lvalue<'a, T> {
    /// Simple variable, e.g., `x`.
    Variable {
        /// Type annotation of the value.
        ty: Option<Spanned<'a, T>>,
    },
    /// Tuple destructuring, e.g., `(x, y)`.
    Tuple(Destructure<'a, T>),
    /// Object destructuring, e.g., `{ x, y }`.
    Object(ObjectDestructure<'a, T>),
}

impl<T> Lvalue<'_, T> {
    /// Returns type of this lvalue.
    pub fn ty(&self) -> LvalueType {
        match self {
            Self::Variable { .. } => LvalueType::Variable,
            Self::Tuple(_) => LvalueType::Tuple,
            Self::Object(_) => LvalueType::Object,
        }
    }
}

/// [`Lvalue`] with the associated code span.
pub type SpannedLvalue<'a, T> = Spanned<'a, Lvalue<'a, T>>;

/// Type of an [`Lvalue`].
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum LvalueType {
    /// Simple variable, e.g., `x`.
    Variable,
    /// Tuple destructuring, e.g., `(x, y)`.
    Tuple,
    /// Object destructuring, e.g., `{ x, y }`.
    Object,
}

impl fmt::Display for LvalueType {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter.write_str(match self {
            Self::Variable => "simple variable",
            Self::Tuple => "tuple destructuring",
            Self::Object => "object destructuring",
        })
    }
}

/// Statement: an expression or a variable assignment.
#[derive(Debug)]
#[non_exhaustive]
pub enum Statement<'a, T: Grammar<'a>> {
    /// Expression, e.g., `x + (1, 2)`.
    Expr(SpannedExpr<'a, T>),

    /// Assigment, e.g., `(x, y) = (5, 8)`.
    Assignment {
        /// LHS of the assignment.
        lhs: SpannedLvalue<'a, T::Type>,
        /// RHS of the assignment.
        rhs: Box<SpannedExpr<'a, T>>,
    },
}

impl<'a, T: Grammar<'a>> Statement<'a, T> {
    /// Returns the type of this statement.
    pub fn ty(&self) -> StatementType {
        match self {
            Self::Expr(_) => StatementType::Expr,
            Self::Assignment { .. } => StatementType::Assignment,
        }
    }
}

impl<'a, T: Grammar<'a>> Clone for Statement<'a, T> {
    fn clone(&self) -> Self {
        match self {
            Self::Expr(expr) => Self::Expr(expr.clone()),
            Self::Assignment { lhs, rhs } => Self::Assignment {
                lhs: lhs.clone(),
                rhs: rhs.clone(),
            },
        }
    }
}

impl<'a, T> PartialEq for Statement<'a, T>
where
    T: Grammar<'a>,
    T::Lit: PartialEq,
    T::Type: PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        match (self, other) {
            (Self::Expr(this), Self::Expr(that)) => this == that,

            (
                Self::Assignment { lhs, rhs },
                Self::Assignment {
                    lhs: that_lhs,
                    rhs: that_rhs,
                },
            ) => lhs == that_lhs && rhs == that_rhs,

            _ => false,
        }
    }
}

/// Statement with the associated code span.
pub type SpannedStatement<'a, T> = Spanned<'a, Statement<'a, T>>;

/// Type of a [`Statement`].
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum StatementType {
    /// Expression, e.g., `x + (1, 2)`.
    Expr,
    /// Assigment, e.g., `(x, y) = (5, 8)`.
    Assignment,
}

impl fmt::Display for StatementType {
    fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
        formatter.write_str(match self {
            Self::Expr => "expression",
            Self::Assignment => "variable assignment",
        })
    }
}

/// Block of statements.
///
/// A block may end with a return expression, e.g., `{ x = 1; x }`.
#[derive(Debug)]
#[non_exhaustive]
pub struct Block<'a, T: Grammar<'a>> {
    /// Statements in the block.
    pub statements: Vec<SpannedStatement<'a, T>>,
    /// The last statement in the block which is returned from the block.
    pub return_value: Option<Box<SpannedExpr<'a, T>>>,
}

impl<'a, T: Grammar<'a>> Clone for Block<'a, T> {
    fn clone(&self) -> Self {
        Self {
            statements: self.statements.clone(),
            return_value: self.return_value.clone(),
        }
    }
}

impl<'a, T> PartialEq for Block<'a, T>
where
    T: Grammar<'a>,
    T::Lit: PartialEq,
    T::Type: PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        self.return_value == other.return_value && self.statements == other.statements
    }
}

impl<'a, T: Grammar<'a>> Block<'a, T> {
    /// Creates an empty block.
    pub fn empty() -> Self {
        Self {
            statements: vec![],
            return_value: None,
        }
    }
}

/// Function definition, e.g., `|x, y| x + y`.
///
/// A function definition consists of a list of arguments and the function body.
#[derive(Debug)]
#[non_exhaustive]
pub struct FnDefinition<'a, T: Grammar<'a>> {
    /// Function arguments, e.g., `x, y`.
    pub args: Spanned<'a, Destructure<'a, T::Type>>,
    /// Function body, e.g., `x + y`.
    pub body: Block<'a, T>,
}

impl<'a, T: Grammar<'a>> Clone for FnDefinition<'a, T> {
    fn clone(&self) -> Self {
        Self {
            args: self.args.clone(),
            body: self.body.clone(),
        }
    }
}

impl<'a, T> PartialEq for FnDefinition<'a, T>
where
    T: Grammar<'a>,
    T::Lit: PartialEq,
    T::Type: PartialEq,
{
    fn eq(&self, other: &Self) -> bool {
        self.args == other.args && self.body == other.body
    }
}