1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// Copyright 2018-2020 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! # References:
//!
//! \[0\] Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
//! Springer. ISBN 0-387-30303-0.

use crate::prelude::*;
use serde::{Deserialize, Serialize};
use std::default::Default;

/// Newton's method iteratively finds the stationary points of a function f by using a second order
/// approximation of f at the current point.
///
/// # References:
///
/// \[0\] Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
/// Springer. ISBN 0-387-30303-0.
#[derive(Clone, Serialize, Deserialize)]
pub struct Newton<F> {
    /// gamma
    gamma: F,
}

impl<F: ArgminFloat> Newton<F> {
    /// Constructor
    pub fn new() -> Self {
        Newton {
            gamma: F::from_f64(1.0).unwrap(),
        }
    }

    /// set gamma
    pub fn set_gamma(mut self, gamma: F) -> Result<Self, Error> {
        if gamma <= F::from_f64(0.0).unwrap() || gamma > F::from_f64(1.0).unwrap() {
            return Err(ArgminError::InvalidParameter {
                text: "Newton: gamma must be in  (0, 1].".to_string(),
            }
            .into());
        }
        self.gamma = gamma;
        Ok(self)
    }
}

impl<F: ArgminFloat> Default for Newton<F> {
    fn default() -> Newton<F> {
        Newton::new()
    }
}

impl<O, F> Solver<O> for Newton<F>
where
    O: ArgminOp<Float = F>,
    O::Param: ArgminScaledSub<O::Param, O::Float, O::Param>,
    O::Hessian: ArgminInv<O::Hessian> + ArgminDot<O::Param, O::Param>,
    F: ArgminFloat,
{
    const NAME: &'static str = "Newton method";

    fn next_iter(
        &mut self,
        op: &mut OpWrapper<O>,
        state: &IterState<O>,
    ) -> Result<ArgminIterData<O>, Error> {
        let param = state.get_param();
        let grad = op.gradient(&param)?;
        let hessian = op.hessian(&param)?;
        let new_param = param.scaled_sub(&self.gamma, &hessian.inv()?.dot(&grad));
        Ok(ArgminIterData::new().param(new_param))
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test_trait_impl;
    use approx::assert_relative_eq;

    test_trait_impl!(newton_method, Newton<f64>);

    #[test]
    fn test_new() {
        let solver: Newton<f64> = Newton::new();
        assert_eq!(solver.gamma.to_ne_bytes(), 1.0f64.to_ne_bytes());
    }

    #[test]
    fn test_default() {
        let solver_new: Newton<f64> = Newton::new();
        let solver_def: Newton<f64> = Newton::default();
        assert_eq!(
            solver_new.gamma.to_ne_bytes(),
            solver_def.gamma.to_ne_bytes()
        );
    }

    #[test]
    fn test_set_gamma() {
        let new_gamma = 0.5;
        let solver: Newton<f64> = Newton::new().set_gamma(new_gamma).unwrap();
        assert_eq!(solver.gamma.to_ne_bytes(), new_gamma.to_ne_bytes());

        let new_gamma = 2.0;
        let error = Newton::new().set_gamma(new_gamma).err().unwrap();
        assert_eq!(
            error.downcast_ref::<ArgminError>().unwrap().to_string(),
            "Invalid parameter: \"Newton: gamma must be in  (0, 1].\""
        );

        let new_gamma = 0.0;
        let error = Newton::new().set_gamma(new_gamma).err().unwrap();
        assert_eq!(
            error.downcast_ref::<ArgminError>().unwrap().to_string(),
            "Invalid parameter: \"Newton: gamma must be in  (0, 1].\""
        );

        let new_gamma = -1.0;
        let error = Newton::new().set_gamma(new_gamma).err().unwrap();
        assert_eq!(
            error.downcast_ref::<ArgminError>().unwrap().to_string(),
            "Invalid parameter: \"Newton: gamma must be in  (0, 1].\""
        );
    }

    #[test]
    fn test_solver() {
        use ndarray::{Array, Array1, Array2};
        struct Problem {}

        impl ArgminOp for Problem {
            type Param = Array1<f64>;
            type Output = f64;
            type Hessian = Array2<f64>;
            type Jacobian = ();
            type Float = f64;

            fn gradient(&self, _p: &Self::Param) -> Result<Self::Param, Error> {
                Ok(Array1::from_vec(vec![1.0, 2.0]))
            }

            fn hessian(&self, _p: &Self::Param) -> Result<Self::Hessian, Error> {
                Ok(Array::from_shape_vec((2, 2), vec![1.0f64, 0.0, 0.0, 1.0])?)
            }
        }

        // Single iteration, starting from [0, 0], gamma = 1
        let problem = Problem {};
        let solver: Newton<f64> = Newton::new();
        let init_param = Array1::from_vec(vec![0.0, 0.0]);

        let param = Executor::new(problem, solver, init_param)
            .max_iters(1)
            .run()
            .unwrap()
            .state
            .best_param;
        assert_relative_eq!(param[0], -1.0, epsilon = f64::EPSILON);
        assert_relative_eq!(param[1], -2.0, epsilon = f64::EPSILON);

        // Two iterations, starting from [0, 0], gamma = 1
        let problem = Problem {};
        let solver: Newton<f64> = Newton::new();
        let init_param = Array1::from_vec(vec![0.0, 0.0]);

        let param = Executor::new(problem, solver, init_param)
            .max_iters(2)
            .run()
            .unwrap()
            .state
            .best_param;
        assert_relative_eq!(param[0], -2.0, epsilon = f64::EPSILON);
        assert_relative_eq!(param[1], -4.0, epsilon = f64::EPSILON);

        // Single iteration, starting from [0, 0], gamma = 0.5
        let problem = Problem {};
        let solver: Newton<f64> = Newton::new().set_gamma(0.5).unwrap();
        let init_param = Array1::from_vec(vec![0.0, 0.0]);

        let param = Executor::new(problem, solver, init_param)
            .max_iters(1)
            .run()
            .unwrap()
            .state
            .best_param;
        assert_relative_eq!(param[0], -0.5, epsilon = f64::EPSILON);
        assert_relative_eq!(param[1], -1.0, epsilon = f64::EPSILON);

        // Two iterations, starting from [0, 0], gamma = 0.5
        let problem = Problem {};
        let solver: Newton<f64> = Newton::new().set_gamma(0.5).unwrap();
        let init_param = Array1::from_vec(vec![0.0, 0.0]);

        let param = Executor::new(problem, solver, init_param)
            .max_iters(2)
            .run()
            .unwrap()
            .state
            .best_param;
        assert_relative_eq!(param[0], -1.0, epsilon = f64::EPSILON);
        assert_relative_eq!(param[1], -2.0, epsilon = f64::EPSILON);
    }
}