1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
// Copyright 2018-2020 argmin developers
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! # References:
//!
//! \[0\] Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
//! Springer. ISBN 0-387-30303-0.

use crate::prelude::*;
use serde::{Deserialize, Serialize};
use std::default::Default;

/// Gauss-Newton method
///
/// # References:
///
/// \[0\] Jorge Nocedal and Stephen J. Wright (2006). Numerical Optimization.
/// Springer. ISBN 0-387-30303-0.
#[derive(Clone, Serialize, Deserialize)]
pub struct GaussNewton<F> {
    /// gamma
    gamma: F,
    /// Tolerance for the stopping criterion based on cost difference
    tol: F,
}

impl<F: ArgminFloat> GaussNewton<F> {
    /// Constructor
    pub fn new() -> Self {
        GaussNewton {
            gamma: F::from_f64(1.0).unwrap(),
            tol: F::epsilon().sqrt(),
        }
    }

    /// set gamma
    pub fn with_gamma(mut self, gamma: F) -> Result<Self, Error> {
        if gamma <= F::from_f64(0.0).unwrap() || gamma > F::from_f64(1.0).unwrap() {
            return Err(ArgminError::InvalidParameter {
                text: "Gauss-Newton: gamma must be in  (0, 1].".to_string(),
            }
            .into());
        }
        self.gamma = gamma;
        Ok(self)
    }

    /// Set tolerance for the stopping criterion based on cost difference
    pub fn with_tol(mut self, tol: F) -> Result<Self, Error> {
        if tol <= F::from_f64(0.0).unwrap() {
            return Err(ArgminError::InvalidParameter {
                text: "Gauss-Newton: tol must be positive.".to_string(),
            }
            .into());
        }
        self.tol = tol;
        Ok(self)
    }
}

impl<F: ArgminFloat> Default for GaussNewton<F> {
    fn default() -> GaussNewton<F> {
        GaussNewton::new()
    }
}

impl<O, F> Solver<O> for GaussNewton<F>
where
    O: ArgminOp<Float = F>,
    O::Param: ArgminScaledSub<O::Param, O::Float, O::Param>
        + ArgminSub<O::Param, O::Param>
        + ArgminMul<O::Float, O::Param>,
    O::Output: ArgminNorm<O::Float>,
    O::Jacobian: ArgminTranspose<O::Jacobian>
        + ArgminInv<O::Jacobian>
        + ArgminDot<O::Jacobian, O::Jacobian>
        + ArgminDot<O::Output, O::Param>
        + ArgminDot<O::Param, O::Param>,
    F: ArgminFloat,
{
    const NAME: &'static str = "Gauss-Newton method";

    fn next_iter(
        &mut self,
        op: &mut OpWrapper<O>,
        state: &IterState<O>,
    ) -> Result<ArgminIterData<O>, Error> {
        let param = state.get_param();
        let residuals = op.apply(&param)?;
        let jacobian = op.jacobian(&param)?;

        let p = jacobian
            .clone()
            .t()
            .dot(&jacobian)
            .inv()?
            .dot(&jacobian.t().dot(&residuals));

        let new_param = param.sub(&p.mul(&self.gamma));

        Ok(ArgminIterData::new()
            .param(new_param)
            .cost(residuals.norm()))
    }

    fn terminate(&mut self, state: &IterState<O>) -> TerminationReason {
        if (state.get_prev_cost() - state.get_cost()).abs() < self.tol {
            return TerminationReason::NoChangeInCost;
        }
        TerminationReason::NotTerminated
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test_trait_impl;
    use approx::assert_relative_eq;

    test_trait_impl!(gauss_newton_method, GaussNewton<f64>);

    #[test]
    fn test_default() {
        let GaussNewton { tol: t, gamma: g } = GaussNewton::<f64>::new();

        assert_eq!(g.to_ne_bytes(), (1.0f64).to_ne_bytes());
        assert_eq!(t.to_ne_bytes(), f64::EPSILON.sqrt().to_ne_bytes());
    }

    #[test]
    fn test_tolerance() {
        let tol1: f64 = 1e-4;

        let GaussNewton { tol: t, .. } = GaussNewton::new().with_tol(tol1).unwrap();

        assert_eq!(t.to_ne_bytes(), tol1.to_ne_bytes());
    }

    #[test]
    fn test_tolerance_error() {
        let tol = -2.0;
        let error = GaussNewton::new().with_tol(tol).err().unwrap();
        assert_eq!(
            error.downcast_ref::<ArgminError>().unwrap().to_string(),
            "Invalid parameter: \"Gauss-Newton: tol must be positive.\""
        );
    }

    #[test]
    fn test_gamma() {
        let gamma: f64 = 0.5;

        let GaussNewton { gamma: g, .. } = GaussNewton::new().with_gamma(gamma).unwrap();

        assert_eq!(g.to_ne_bytes(), gamma.to_ne_bytes());
    }

    #[test]
    fn test_gamma_errors() {
        let gamma = -0.5;
        let error = GaussNewton::new().with_gamma(gamma).err().unwrap();
        assert_eq!(
            error.downcast_ref::<ArgminError>().unwrap().to_string(),
            "Invalid parameter: \"Gauss-Newton: gamma must be in  (0, 1].\""
        );

        let gamma = 0.0;
        let error = GaussNewton::new().with_gamma(gamma).err().unwrap();
        assert_eq!(
            error.downcast_ref::<ArgminError>().unwrap().to_string(),
            "Invalid parameter: \"Gauss-Newton: gamma must be in  (0, 1].\""
        );

        let gamma = 2.0;
        let error = GaussNewton::new().with_gamma(gamma).err().unwrap();
        assert_eq!(
            error.downcast_ref::<ArgminError>().unwrap().to_string(),
            "Invalid parameter: \"Gauss-Newton: gamma must be in  (0, 1].\""
        );
    }

    #[test]
    fn test_solver() {
        use ndarray::{Array, Array1, Array2};
        use std::cell::RefCell;

        struct Problem {
            counter: RefCell<usize>,
        }

        impl ArgminOp for Problem {
            type Param = Array1<f64>;
            type Output = Array1<f64>;
            type Hessian = ();
            type Jacobian = Array2<f64>;
            type Float = f64;

            fn apply(&self, _p: &Self::Param) -> Result<Self::Output, Error> {
                if *self.counter.borrow() == 0 {
                    let mut c = self.counter.borrow_mut();
                    *c += 1;
                    Ok(Array1::from_vec(vec![0.5, 2.0]))
                } else {
                    Ok(Array1::from_vec(vec![0.3, 1.0]))
                }
            }

            fn jacobian(&self, _p: &Self::Param) -> Result<Self::Jacobian, Error> {
                Ok(Array::from_shape_vec((2, 2), vec![1f64, 2.0, 3.0, 4.0])?)
            }
        }

        // Single iteration, starting from [0, 0], gamma = 1
        let problem = Problem {
            counter: RefCell::new(0),
        };
        let solver: GaussNewton<f64> = GaussNewton::new();
        let init_param = Array1::from_vec(vec![0.0, 0.0]);

        let param = Executor::new(problem, solver, init_param)
            .max_iters(1)
            .run()
            .unwrap()
            .state
            .best_param;
        assert_relative_eq!(param[0], -1.0, epsilon = f64::EPSILON.sqrt());
        assert_relative_eq!(param[1], 0.25, epsilon = f64::EPSILON.sqrt());

        // Two iterations, starting from [0, 0], gamma = 1
        let problem = Problem {
            counter: RefCell::new(0),
        };
        let solver: GaussNewton<f64> = GaussNewton::new();
        let init_param = Array1::from_vec(vec![0.0, 0.0]);

        let param = Executor::new(problem, solver, init_param)
            .max_iters(2)
            .run()
            .unwrap()
            .state
            .best_param;
        assert_relative_eq!(param[0], -1.4, epsilon = f64::EPSILON.sqrt());
        assert_relative_eq!(param[1], 0.3, epsilon = f64::EPSILON.sqrt());

        // Single iteration, starting from [0, 0], gamma = 0.5
        let problem = Problem {
            counter: RefCell::new(0),
        };
        let solver: GaussNewton<f64> = GaussNewton::new().with_gamma(0.5).unwrap();
        let init_param = Array1::from_vec(vec![0.0, 0.0]);

        let param = Executor::new(problem, solver, init_param)
            .max_iters(1)
            .run()
            .unwrap()
            .state
            .best_param;
        assert_relative_eq!(param[0], -0.5, epsilon = f64::EPSILON.sqrt());
        assert_relative_eq!(param[1], 0.125, epsilon = f64::EPSILON.sqrt());

        // Two iterations, starting from [0, 0], gamma = 0.5
        let problem = Problem {
            counter: RefCell::new(0),
        };
        let solver: GaussNewton<f64> = GaussNewton::new().with_gamma(0.5).unwrap();
        let init_param = Array1::from_vec(vec![0.0, 0.0]);

        let param = Executor::new(problem, solver, init_param)
            .max_iters(2)
            .run()
            .unwrap()
            .state
            .best_param;
        assert_relative_eq!(param[0], -0.7, epsilon = f64::EPSILON.sqrt());
        assert_relative_eq!(param[1], 0.15, epsilon = f64::EPSILON.sqrt());
    }
}