``` 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
```
```// Copyright 2018-2020 argmin developers
//
// copied, modified, or distributed except according to those terms.

//! Landweber iteration
//!
//! [Landweber](struct.Landweber.html)
//!
//! # References
//!
//! [0] Landweber, L. (1951): An iteration formula for Fredholm integral equations of the first
//! kind. Amer. J. Math. 73, 615–624
//! [1] https://en.wikipedia.org/wiki/Landweber_iteration

use crate::prelude::*;
use serde::{Deserialize, Serialize};

/// The Landweber iteration is a solver for ill-posed linear inverse problems.
///
/// In iteration `k`, the new parameter vector `x_{k+1}` is calculated from the previous parameter
/// vector `x_k` and the gradient at `x_k` according to the following update rule:
///
/// `x_{k+1} = x_k - omega * \nabla f(x_k)`
///
/// [Example](https://github.com/argmin-rs/argmin/blob/master/examples/landweber.rs)
///
/// # References
///
/// [0] Landweber, L. (1951): An iteration formula for Fredholm integral equations of the first
/// kind. Amer. J. Math. 73, 615–624
/// [1] https://en.wikipedia.org/wiki/Landweber_iteration
#[derive(Clone, Serialize, Deserialize)]
pub struct Landweber<F> {
/// omega
omega: F,
}

impl<F> Landweber<F> {
/// Constructor
pub fn new(omega: F) -> Self {
Landweber { omega }
}
}

impl<O, F> Solver<O> for Landweber<F>
where
O: ArgminOp<Float = F>,
O::Param: ArgminScaledSub<O::Param, O::Float, O::Param>,
F: ArgminFloat,
{
const NAME: &'static str = "Landweber";

fn next_iter(
&mut self,
op: &mut OpWrapper<O>,
state: &IterState<O>,
) -> Result<ArgminIterData<O>, Error> {
let param = state.get_param();