1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
use super::*;
use rand::SeedableRng;
use rand::RngCore;

impl GameResult {
    #[inline]
    fn value(&self) -> f32 {
        match *self {
            GameResult::Win => 1.0,
            GameResult::Lose => 0.0,
            GameResult::Draw => 0.5,
        }
    }
}

impl<P: Player, A: Action, S: GameState<P,A>> MCTS<P, A, S> {
    ///Call this method to instantiate a new search with default parameters. The root game state from which to search is passed as a value to be owned by the MCTS struct.
    pub fn new(root: S) -> Self {
        let s = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15];
        Self {
            exploration: 2.0f32.sqrt(),
            expansion: 0,
            use_custom_evaluation: false,
            use_transposition: false,
            info: Info::default(),
            root: root,
            stack: Vec::new(),
            actions: Vec::new(),
            rand: Rng::from_seed(s),
            map: HashMap::default(),
        }
    }

    ///Pick the best move after some time spent pondering. Returns None if ponder has not yet been called.
    pub fn best(&self) -> Option<A> {
        let mut best = None;
        let mut max = -0.1;
        
        self.ply(&mut |(a,w,_s)| {
            if max < w {
                max = w;
                best = Some(a);
            }
        });
        
        return best;
    }

    ///Iterate through the actions in the first ply. The callback f is called for each action in the first ply with a tuple of (a, w, s) where a is the action, w is the expected value of the action, and s is the confidence in the value of the action. s is similar to standard deviation where closer to zero is more confident.
    pub fn ply<F>(&self, f: &mut F) where F: FnMut((A,f32,f32)) {
        if self.stack.len() == 0 {
            return;
        }

        if let Node::Branch(_,_,player,_,_,c) = self.stack[0] {
            let mut sibling = Some(c);
            while let Some(u) = sibling {
                match self.stack[u] {
                    Node::Leaf(s,a,p,w,n) |
                    Node::Branch(s,a,p,w,n,_) => {
                        let n = n as f32;
                        let w = w/n;
                        let w = if p == player {w} else {1.0 - w};
                        let e = 0.5/n + (w*(1.0 - w)/n).sqrt();
                        f((a,w,e));
                        sibling = s.then(||u+1);
                    },
                    Node::Terminal(s,a,p,w) => {
                        let w = if p == player {w} else {1.0 - w};
                        f((a,w,0.0));
                        sibling = s.then(||u+1);
                    },
                    Node::Unknown(s,a) => {
                        f((a,0.5,0.5));
                        sibling = s.then(||u+1);
                    },
                    Node::Transpose(_,_,_) => 
                        panic!("Transpositions should not be possible at root ply")
                }
            }
        } else {
            debug_assert!(false,"root node should not be a branch");
        }
    }
    
    ///Call this method to search the root game state a given number of iterations. This method may be called any number of times to improve the search results. Call ply or best to get the current search results.
    pub fn ponder(&mut self, n: usize) {
        if self.stack.len() == 0 {
            let mut actions = Vec::new();
            self.root.actions(&mut |a| actions.push(a));
            
            
            self.stack.push(Node::Leaf(
                false,
                // This action is never used, so it doesn't matter what it is
                *actions.first().expect("should have at least one action"),
                self.root.player(),
                0.5,
                1
            ));
            
            self.info.leaf = 1;
            
            //Call go once with expansion set to zero to force the root to expand 
            let root = self.root;
            let expansion = self.expansion;
            self.expansion = 0;
            self.go(&root, 0);
            self.expansion = expansion;
            self.ponder(n - 1);
        } else {
            let root = self.root;
            for _ in 0..n {
                self.go(&root,0);
            }
            
            self.info.bytes = self.stack.len() * std::mem::size_of::<Node<P,A>>();
        }
    }
    
    fn uct(&self,index: usize, player: P, nt: u32) -> (bool,A,f32) {
        
        match self.stack[index] {
            Node::Terminal(s,a,p,w) => {
                let val = if p == player {w} else {1.0 - w};
                (s,a,val)
            },
            Node::Unknown(_,a) => {
                (false,a,f32::INFINITY)
            },
            Node::Leaf(s,a,p,w,n) |
            Node::Branch(s,a,p,w,n,_) => {
                let n = n as f32;
                let nt = nt as f32;
                let w = if p == player {w} else {n - w};
                let c = self.exploration;
                let val = w/n + c*(nt.ln()/n).sqrt();
                (s,a,val)
            },
            Node::Transpose(s,a,u) => {
                
                //Do not use recursion to allow the compiler to inline
                let v = match self.stack[u] {
                    Node::Terminal(_,_,p,w) => {
                        if p == player {w} else {1.0 - w}
                    },
                    Node::Unknown(_,_) => {
                        f32::INFINITY
                    },
                    Node::Leaf(_,_,p,w,n) |
                    Node::Branch(_,_,p,w,n,_) => {
                        let n = n as f32;
                        let nt = nt as f32;
                        let w = if p == player {w} else {n - w};
                        let c = self.exploration;
                        w/n + c*(nt.ln()/n).sqrt()
                    },
                    Node::Transpose(_,_,_) => {
                        panic!("should not be possible to transpose to another transpose");
                    }
                };
                (s,a,v)
            }
        }
    }
    
    fn rollout(&mut self,state: &S) -> f32 {
        let mut sim;
        let mut s = state;
        let p = s.player();
        
        loop {
            if let Some(result) = s.gameover() {
                let side = s.player() == p;
                let v = result.value();
                return if side {v} else {1.0 - v}
            }
            
            self.actions.clear();
            s.actions(&mut |a|{
                self.actions.push(a);
            });
            
            //use rejection sampling to choose a random action
            let max = self.actions.len();
            let mask = max.next_power_of_two() - 1;
            loop {
                let r = (self.rand.next_u64() as usize) & mask;
                if r < max {
                    sim = s.make(self.actions[r]);
                    break;
                }
            }
            
            s = &sim;
        }
    }
    
    fn go(&mut self,state: &S, index: usize) -> f32 {
        match self.stack[index] {
            Node::Branch(s,a,player,w,n,c) => {
                let mut selection = None;
                let mut best = -1.0;
                let mut sibling = Some(c);
                
                while let Some(u) = sibling {
                    let (s,a,uct) = self.uct(u,player,n);
                    if uct > best {
                        best = uct;
                        selection = Some((a,u));
                    }
                    sibling = s.then(||u+1);
                }
                let (action,next_index) = selection.expect("should find a best action");
                let next = state.make(action);
                let v = self.go(&next,next_index);

                let v = if next.player() == player {v} else {1.0 - v};
                let w = w + v;
                let n = n + 1;
                self.stack[index] = Node::Branch(s,a,player,w,n,c);
                
                if index == 0 {
                    self.info.q = w/(n as f32);
                    self.info.n = n;
                }
                
                v
            },
            Node::Leaf(s,a,p,w,n) => {
                if n > self.expansion {
                    let c = self.stack.len();
                    
                    state.actions(&mut |a| {
                        self.stack.push(Node::Unknown(true,a));
                        self.info.unknown += 1;
                    });
                    
                    
                    if let Some(Node::Unknown(_,a)) = self.stack.pop() {
                        self.stack.push(Node::Unknown(false,a));
                    }
                    
                    self.stack[index] = Node::Branch(s,a,p,w,n,c);
                    self.info.leaf -= 1;
                    self.info.branch += 1;
                    self.go(state,index)
                } else {
                    let v = if self.use_custom_evaluation {
                        state.custom_evaluation()
                    } else {
                        self.rollout(state)
                    };
                    self.stack[index] = Node::Leaf(s,a,p,w + v,n + 1);
                    v
                }
            },
            Node::Terminal(_,_,_,w) => {
                w
            },
            Node::Unknown(s,a) => {
                
                if self.use_transposition {
                    let h = state.hash();
                    if let Some(&u) = self.map.get(&h) {
                        self.stack[index] = Node::Transpose(s,a,u);
                        self.info.unknown -= 1;
                        self.info.transpose += 1;
                        return self.go(state,u);
                    } else {
                        self.map.insert(h, index);
                    }
                }
                
                let p = state.player();
                if let Some(result) = state.gameover() {   
                    self.stack[index] = Node::Terminal(s,a,p,result.value());
                    self.info.unknown -= 1;
                    self.info.terminal += 1;
                } else {
                    
                    self.stack[index] = Node::Leaf(s,a,p,0.0,0);
                    self.info.unknown -= 1;
                    self.info.leaf += 1;
                }
                
                self.go(state,index)
            },
            Node::Transpose(_,_,u) => {
                self.go(state,u)
            }
        }
    }
}