1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
#![no_std]
#![deny(
    warnings,
    missing_docs,
    missing_debug_implementations,
    rust_2018_idioms
)]

//! `arae` provides `Cursed`, a trait for types that provide the ability to access
//! their elements given a `Cursor`.
//!
//! ## Example
//! ```rust
//! use arae::{CurVec, CursedExt, Bounded};
//!
//! // Create a new `CurVec` of length 10 with the elements
//! // initialized via `Default::default`.
//! let mut vec = CurVec::new_with_default(10);
//!
//! // Create two cursors pointing the the head of the vec.
//! let write_cursor = vec.head();
//! let read_cursor = vec.head();
//!
//! *vec.get_mut(write_cursor) = 1;
//!
//! assert_eq!(*vec.get(read_cursor), 1);
//! ```

extern crate alloc;

mod cursor;
/// Iterators for [`Cursed`](trait.Cursed.html) types.
pub mod iter;
mod vec;

#[cfg(feature = "atomic")]
pub use self::cursor::AtomicCursor;
pub use self::cursor::{AsCursor, Cursor};
pub use self::vec::CurVec;

use self::iter::{Iter, WrappingIter};

/// `Cursed` types provide the ability to access their elements via [`Cursor`]s.
///
/// ## Safety
///
/// See the notes on the single function this trait requires: `is_owner`.
///
/// [`Cursor`]: struct.Cursor.html
pub unsafe trait Cursed<T> {
    /// Returns `true` if the [`Cursor`] is owned by `self`, `false` if not.
    ///
    /// This check determines whether or not a [`Cursor`] is pointing to valid
    /// memory, owned by `self` at the time of calling, and is used when
    /// dereferencing the [`Cursor`].
    ///
    /// The actual operation of checking if the the cursor is owned is not
    /// `unsafe`, however implementations of this trait **must** ensure the
    /// [`Cursor`] is pointing to valid memory owned by `self`, and that it
    /// does not disappear while `self` is alive.
    ///
    /// [`Cursor`]: struct.Cursor.html
    fn is_owner(&self, cursor: Cursor<T>) -> bool;
}

/// `Sequence` types are [`Cursed`] types that provide the ability to move forwards
/// and backwards through their elements.
///
/// [`Cursed`]: trait.Cursed.html
/// [`Sequence`]: trait.Sequence.html
pub trait Sequence<T>: Cursed<T> {
    /// Given a [`Cursor`], return its next element step.
    ///
    /// `None` is returned if the cursor provided cannot advance any further.
    ///
    /// [`Cursor`]: struct.Cursor.html
    fn next(&self, cursor: Cursor<T>) -> Option<Cursor<T>>;

    /// Given a [`Cursor`], return its previous element step.
    ///
    /// `None` is returned if the cursor provided cannot reverse any further.
    ///
    /// [`Cursor`]: struct.Cursor.html
    fn prev(&self, cursor: Cursor<T>) -> Option<Cursor<T>>;

    /// Given a [`Cursor`], return the bounds of the remaining steps.
    ///
    /// Specifically, `remaining()` returns a tuple where the first element is
    /// the lower bound, and the second element is the upper bound, as a known
    /// lower and optional upper bound.
    ///
    /// # Implementation notes
    ///
    /// As with `Iterator::size_hint()`, `remaining()` is primarily intended to
    /// be used for optimizations such as reserving space for the elements of the
    /// iterator, but must not be trusted to e.g., omit bounds checks in unsafe code.
    /// An incorrect implementation of `remaining()` should not lead to memory
    /// safety violations.
    ///
    /// [`Cursor`]: struct.Cursor.html
    fn remaining(&self, cursor: Cursor<T>) -> (usize, Option<usize>);
}

/// `Bounded` types are [`Cursed`] [`Sequence`]s that know their `head` and `tail` locations.
///
/// [`Cursed`]: trait.Cursed.html
/// [`Sequence`]: trait.Sequence.html
#[allow(clippy::len_without_is_empty)]
pub trait Bounded<T>: Sequence<T> {
    /// Returns the number of items within the sequence.
    fn len(&self) -> usize;

    /// Returns a [`Cursor`] pointing to the head of the sequence.
    ///
    /// [`Cursor`]: struct.Cursor.html
    fn head(&self) -> Cursor<T>;

    /// Returns a [`Cursor`] pointing to the tail of the sequence.
    ///
    /// [`Cursor`]: struct.Cursor.html
    fn tail(&self) -> Cursor<T>;

    /// Returns `Some(`[`Cursor`]`)` at the given offset from the head of the sequence,
    /// `None` if the offset is out of bounds.
    ///
    /// [`Cursor`]: struct.Cursor.html
    fn at(&self, offset: usize) -> Option<Cursor<T>>;
}

/// `Contiguous` types are [`Bounded`] [`Sequence`]s that guarantee elements
/// reside next to each other in memory (ie. `[T]`).
///
/// This trait is `unsafe` as dependencies may implement unsafe behaviour with
/// this guarantee.
///
/// # Safety
/// Implementers must ensure all elements reside next to each other in memory.
///
/// [`Bounded`]: trait.Bounded.html
/// [`Sequence`]: trait.Sequence.html
pub unsafe trait Contiguous<T>: Bounded<T> {}

/// Extended functionality for implementations of [`Cursed`].
///
/// [`Cursed`]: trait.Cursed.html
pub trait CursedExt<T>: Cursed<T> + Sized {
    /// Returns a reference to the element at the given [`Cursor`].
    ///
    /// # Example
    /// ```rust
    /// use arae::{CurVec, CursedExt, Bounded};
    ///
    /// let mut vec: CurVec<_> = vec![0].into();
    ///
    /// assert_eq!(*vec.get(vec.head()), 0);
    /// ```
    ///
    /// # Panics
    /// Panics if `self` does not own the [`Cursor`].
    ///
    /// [`Cursor`]: struct.Cursor.html
    #[inline]
    fn get(&self, cursor: Cursor<T>) -> &T {
        cursor.get(self)
    }

    /// Returns a mutable reference to the element at the given [`Cursor`].
    ///
    /// # Example
    /// ```rust
    /// use arae::{CurVec, CursedExt, Bounded};
    ///
    /// let mut vec: CurVec<_> = vec![0].into();
    ///
    /// *vec.get_mut(vec.head()) = 1;
    ///
    /// assert_eq!(*vec.get(vec.head()), 1);
    /// ```
    ///
    /// # Panics
    /// Panics if `self` does not own the [`Cursor`].
    ///
    /// [`Cursor`]: struct.Cursor.html
    #[inline]
    fn get_mut(&mut self, cursor: Cursor<T>) -> &mut T {
        cursor.get_mut(self)
    }

    /// Returns `true` if the [`Cursor`] points at the first element, `false` if not.
    ///
    /// [`Cursor`]: struct.Cursor.html
    #[inline]
    fn is_head(&self, cursor: Cursor<T>) -> bool
    where
        Self: Bounded<T>,
    {
        cursor == self.head()
    }

    /// Returns `true` if the [`Cursor`] points at the last element, `false` if not.
    ///
    /// [`Cursor`]: struct.Cursor.html
    #[inline]
    fn is_tail(&self, cursor: Cursor<T>) -> bool
    where
        Self: Bounded<T>,
    {
        cursor == self.tail()
    }

    /// Returns the element offset at the given [`Cursor`].
    ///
    /// # Panics
    /// Panics if `self` does not own the [`Cursor`].
    ///
    /// [`Cursor`]: struct.Cursor.html
    fn offset(&self, cursor: Cursor<T>) -> usize
    where
        Self: Bounded<T>,
    {
        assert!(self.is_owner(cursor));
        cursor.offset_from(self.head())
    }

    /// Given a [`Cursor`], return its next element step.
    ///
    /// If the [`Cursor`] provided points to the end of the structure,
    /// the [`Cursor`] returned will wrap and point to the start.
    ///
    /// # Example
    /// ```rust
    /// use arae::{CurVec, CursedExt, Bounded};
    ///
    /// let vec: CurVec<_> = vec![1, 2, 3].into();
    ///
    /// let cursor = vec.wrapping_next(vec.tail());
    ///
    /// assert_eq!(*vec.get(cursor), 1);
    /// ```
    ///
    /// # Panics
    /// Panics if `self` does not own the [`Cursor`].
    ///
    /// [`Cursor`]: struct.Cursor.html
    #[inline]
    fn wrapping_next(&self, cursor: Cursor<T>) -> Cursor<T>
    where
        Self: Bounded<T>,
    {
        if cursor == self.tail() {
            self.head()
        } else {
            match self.next(cursor) {
                Some(next_cursor) => next_cursor,
                None => unreachable!(),
            }
        }
    }

    /// Given a [`Cursor`], return its previous element step.
    ///
    /// If the [`Cursor`] provided points to the `head` of the structure,
    /// the [`Cursor`] returned will wrap and point to the `tail`.
    ///
    /// # Example
    /// ```rust
    /// use arae::{CurVec, CursedExt, Bounded};
    ///
    /// let vec: CurVec<_> = vec![1, 2, 3].into();
    ///
    /// let cursor = vec.wrapping_prev(vec.head());
    ///
    /// assert_eq!(*vec.get(cursor), 3);
    /// ```
    ///
    /// # Panics
    /// Panics if `self` does not own the [`Cursor`].
    ///
    /// [`Cursor`]: struct.Cursor.html
    #[inline]
    fn wrapping_prev(&self, cursor: Cursor<T>) -> Cursor<T>
    where
        Self: Bounded<T>,
    {
        if cursor == self.head() {
            self.tail()
        } else {
            match self.prev(cursor) {
                Some(prev_cursor) => prev_cursor,
                None => unreachable!(),
            }
        }
    }

    /// Returns a `Iterator<Item = (&T, Cursor<T>)>` that starts at the `head`.
    ///
    /// # Example
    /// ```rust
    /// use arae::{CurVec, CursedExt};
    ///
    /// let vec: CurVec<_> = vec![1, 2].into();
    ///
    /// for (elem, cursor) in vec.iter() {
    ///     println!("elem {} at {:?}:", elem, cursor);
    /// }
    /// ```
    #[inline]
    fn iter(&self) -> Iter<'_, Self, T>
    where
        Self: Bounded<T>,
    {
        self.iter_at(self.head())
    }

    /// Returns a `Iterator<Item = (&T, Cursor<T>)>` that starts at the given [`Cursor`].
    ///
    /// # Example
    /// ```rust
    /// use arae::{CurVec, CursedExt, Bounded};
    ///
    /// let vec: CurVec<_> = vec![1, 2].into();
    ///
    /// for (elem, cursor) in vec.iter_at(vec.head()) {
    ///     println!("elem {} at {:?}:", elem, cursor);
    /// }
    /// ```
    ///
    /// [`Cursor`]: struct.Cursor.html
    fn iter_at(&self, cursor: Cursor<T>) -> Iter<'_, Self, T>
    where
        Self: Sequence<T>,
    {
        Iter::new(self, cursor)
    }

    /// Returns a wrapping `Iterator<Item = (&T, Cursor<T>)>` that starts at
    /// the `head`.
    ///
    /// This iterator is never ending and will wrap from the `tail` to the
    /// `head` and vice-versa when iterating in the opposite direction.
    ///
    /// # Example
    /// ```rust
    /// use arae::{CurVec, CursedExt};
    ///
    /// let vec: CurVec<_> = vec![1, 2].into();
    ///
    /// for (elem, cursor) in vec.wrapping_iter() {
    ///     println!("elem: {}", elem);
    ///     if vec.is_tail(cursor) {
    ///         break;
    ///     }
    /// }
    /// ```
    #[inline]
    fn wrapping_iter(&self) -> WrappingIter<'_, Self, T>
    where
        Self: Bounded<T>,
    {
        self.wrapping_iter_at(self.head())
    }

    /// Returns a wrapping `Iterator<Item = (&T, Cursor<T>)>` that starts at
    /// the given [`Cursor`].
    ///
    /// This iterator is never ending and will wrap from the `tail` to the
    /// `head` and vice-versa when iterating in the opposite direction.
    ///
    /// # Example
    /// ```rust
    /// use arae::{CurVec, CursedExt, Bounded};
    ///
    /// let vec: CurVec<_> = vec![1, 2].into();
    ///
    /// for (elem, cursor) in vec.wrapping_iter_at(vec.head()) {
    ///     println!("elem: {}", elem);
    ///     if vec.is_tail(cursor) {
    ///         break;
    ///     }
    /// }
    /// ```
    ///
    /// [`Cursor`]: struct.Cursor.html
    #[inline]
    fn wrapping_iter_at(&self, cursor: Cursor<T>) -> WrappingIter<'_, Self, T>
    where
        Self: Sequence<T>,
    {
        WrappingIter::new(self, cursor)
    }
}

impl<T, U> CursedExt<U> for T where T: Cursed<U> {}

#[cfg(feature = "atomic")]
mod atomic {
    #[cfg(feature = "loom")]
    pub use loom::sync::atomic::{AtomicPtr, Ordering};

    #[cfg(not(feature = "loom"))]
    pub use core::sync::atomic::{AtomicPtr, Ordering};
}