1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
//! AppendOnlyVec
//!
//! This is a pretty simple type, which is a vector that you can push into, but
//! cannot modify the elements of.  The data structure never moves an element
//! once allocated, so you can push to the vec even while holding references to
//! elements that have already been pushed.
//!
//! ### Scaling
//!
//! 1. Accessing an element is O(1), but slightly more expensive than for a
//!    standard `Vec`.
//!
//! 2. Pushing a new element amortizes to O(1), but may require allocation of a
//!    new chunk.
//!
//! ### Example
//!
//! ```
//! use append_only_vec::AppendOnlyVec;
//! static V: AppendOnlyVec<String> = AppendOnlyVec::<String>::new();
//! let mut threads = Vec::new();
//! for thread_num in 0..10 {
//!     threads.push(std::thread::spawn(move || {
//!          for n in 0..100 {
//!               let s = format!("thread {} says {}", thread_num, n);
//!               let which = V.push(s.clone());
//!               assert_eq!(&V[which], &s);
//!          }
//!     }));
//! }
//! for t in threads {
//!    t.join();
//! }
//! assert_eq!(V.len(), 1000);
//! ```

use std::cell::UnsafeCell;
use std::ops::Index;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering;
pub struct AppendOnlyVec<T> {
    count: AtomicUsize,
    reserved: AtomicUsize,
    data: [UnsafeCell<*mut T>; BITS_USED - 1 - 3],
}

unsafe impl<T: Send> Send for AppendOnlyVec<T> {}
unsafe impl<T: Sync + Send> Sync for AppendOnlyVec<T> {}

const BITS: usize = std::mem::size_of::<usize>() * 8;

#[cfg(target_arch = "x86_64")]
const BITS_USED: usize = 48;
#[cfg(all(not(target_arch = "x86_64"), target_pointer_width = "64"))]
const BITS_USED: usize = 64;
#[cfg(target_pointer_width = "32")]
const BITS_USED: usize = 32;

// This takes an index into a vec, and determines which data array will hold it
// (the first return value), and what the index will be into that data array
// (second return value)
//
// The ith data array holds 1<<i values.
const fn indices(i: usize) -> (u32, usize) {
    let i = i + 8;
    let bin = BITS as u32 - 1 - i.leading_zeros();
    let bin = bin - 3;
    let offset = i - bin_size(bin);
    (bin, offset)
}
const fn bin_size(array: u32) -> usize {
    (1 << 3) << array
}

#[test]
fn test_indices() {
    for i in 0..32 {
        println!("{:3}: {} {}", i, indices(i).0, indices(i).1);
    }
    let mut array = 0;
    let mut offset = 0;
    let mut index = 0;
    while index < 1000 {
        index += 1;
        offset += 1;
        if offset >= bin_size(array) {
            offset = 0;
            array += 1;
        }
        assert_eq!(indices(index), (array, offset));
    }
}

impl<T> AppendOnlyVec<T> {
    /// Return an `Iterator` over the elements of the vec.
    pub fn iter(&self) -> impl DoubleEndedIterator<Item = &T> + ExactSizeIterator {
        // FIXME this could be written to be a little more efficient probably,
        // if we made it read each pointer only once.  On the other hand, that
        // could make a reversed iterator less efficient?
        (0..self.len()).map(|i| unsafe { self.get_unchecked(i) })
    }
    /// Find the length of the array.
    #[inline]
    pub fn len(&self) -> usize {
        self.count.load(Ordering::Acquire)
    }

    fn layout(&self, array: u32) -> std::alloc::Layout {
        std::alloc::Layout::array::<T>(bin_size(array)).unwrap()
    }
    /// Append an element to the array
    ///
    /// This is notable in that it doesn't require a `&mut self`, because it
    /// does appropriate atomic synchronization.
    pub fn push(&self, val: T) -> usize {
        let idx = self.reserved.fetch_add(1, Ordering::Relaxed);
        let (array, offset) = indices(idx);
        let ptr = if self.len() < 1 + idx - offset {
            // We are working on a new array, which may not have been allocated...
            if offset == 0 {
                // It is our job to allocate the array!  The size of the array
                // is determined in the self.layout method, which needs to be
                // consistent with the indices function.
                let layout = self.layout(array);
                let ptr = unsafe { std::alloc::alloc(layout) } as *mut T;
                unsafe {
                    *self.data[array as usize].get() = ptr;
                }
                ptr
            } else {
                // We need to wait for the array to be allocated.
                while self.len() < 1 + idx - offset {
                    std::hint::spin_loop();
                }
                // The Ordering::Acquire semantics of self.len() ensures that
                // this pointer read will get the non-null pointer allocated
                // above.
                unsafe { *self.data[array as usize].get() }
            }
        } else {
            // The Ordering::Acquire semantics of self.len() ensures that
            // this pointer read will get the non-null pointer allocated
            // above.
            unsafe { *self.data[array as usize].get() }
        };

        // The contents of this offset are guaranteed to be unused (so far)
        // because we got the idx from our fetch_add above, and ptr is
        // guaranteed to be valid because of the loop we used above, which used
        // self.len() which has Ordering::Acquire semantics.
        unsafe { (ptr.add(offset)).write(val) };

        // Now we need to increase the size of the vec, so it can get read.  We
        // use Release upon success, to ensure that the value which we wrote is
        // visible to any thread that has confirmed that the count is big enough
        // to read that element.  In case of failure, we can be relaxed, since
        // we don't do anything with the result other than try again.
        while self
            .count
            .compare_exchange(idx, idx + 1, Ordering::Release, Ordering::Relaxed)
            .is_err()
        {
            // This means that someone else *started* pushing before we started,
            // but hasn't yet finished.  We have to wait for them to finish
            // pushing before we can update the count.  Note that using a
            // spinloop here isn't really ideal, but except when allocating a
            // new array, the window between reserving space and using it is
            // pretty small, so contention will hopefully be rare, and having a
            // context switch during that interval will hopefully be vanishingly
            // unlikely.
            std::hint::spin_loop();
        }
        idx
    }
    const EMPTY: UnsafeCell<*mut T> = UnsafeCell::new(std::ptr::null_mut());
    /// Allocate a new empty array
    pub const fn new() -> Self {
        AppendOnlyVec {
            count: AtomicUsize::new(0),
            reserved: AtomicUsize::new(0),
            data: [Self::EMPTY; BITS_USED - 1 - 3],
        }
    }

    /// Index the vec without checking the bounds.
    ///
    /// To use this correctly, you *must* first ensure that the `idx <
    /// self.len()`.  This not only prevents overwriting the bounds, but also
    /// creates the memory barriers to ensure that the data is visible to the
    /// current thread.  In single-threaded code, however, it is not needed to
    /// call `self.len()` explicitly (if e.g. you have counted the number of
    /// elements pushed).
    unsafe fn get_unchecked(&self, idx: usize) -> &T {
        let (array, offset) = indices(idx);
        // We use a Relaxed load of the pointer, because the length check (which
        // was supposed to be performed) should ensure that the data we want is
        // already visible, since self.len() used Ordering::Acquire on
        // `self.count` which synchronizes with the Ordering::Release write in
        // `self.push`.
        let ptr = *self.data[array as usize].get();
        &*ptr.add(offset)
    }
}
impl<T> std::fmt::Debug for AppendOnlyVec<T>
where
    T: std::fmt::Debug,
{
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_list().entries(self.iter()).finish()
    }
}
impl<T> Index<usize> for AppendOnlyVec<T> {
    type Output = T;

    fn index(&self, idx: usize) -> &Self::Output {
        assert!(idx < self.len()); // this includes the required ordering memory barrier
        let (array, offset) = indices(idx);
        // The ptr value below is safe, because the length check above will
        // ensure that the data we want is already visible, since it used
        // Ordering::Acquire on `self.count` which synchronizes with the
        // Ordering::Release write in `self.push`.
        let ptr = unsafe { *self.data[array as usize].get() };
        unsafe { &*ptr.add(offset) }
    }
}

impl<T> Drop for AppendOnlyVec<T> {
    fn drop(&mut self) {
        // First we'll drop all the `T` in a slightly sloppy way.  FIXME this
        // could be optimized to avoid reloading the `ptr`.
        for idx in 0..self.len() {
            let (array, offset) = indices(idx);
            // We use a Relaxed load of the pointer, because the loop above (which
            // ends before `self.len()`) should ensure that the data we want is
            // already visible, since it Acquired `self.count` which synchronizes
            // with the write in `self.push`.
            let ptr = unsafe { *self.data[array as usize].get() };
            unsafe {
                std::ptr::drop_in_place(ptr.add(offset));
            }
        }
        // Now we will free all the arrays.
        for array in 0..self.data.len() as u32 {
            // This load is relaxed because no other thread can have a reference
            // to Self because we have a &mut self.
            let ptr = unsafe { *self.data[array as usize].get() };
            if !ptr.is_null() {
                let layout = self.layout(array);
                unsafe { std::alloc::dealloc(ptr as *mut u8, layout) };
            } else {
                break;
            }
        }
    }
}

#[test]
fn test_pushing_and_indexing() {
    let v = AppendOnlyVec::<usize>::new();

    for n in 0..50 {
        v.push(n);
        assert_eq!(v.len(), n + 1);
        for i in 0..(n + 1) {
            assert_eq!(v[i], i);
        }
    }

    let vec: Vec<usize> = v.iter().copied().collect();
    let ve2: Vec<usize> = (0..50).collect();
    assert_eq!(vec, ve2);
}

#[test]
fn test_parallel_pushing() {
    use std::sync::Arc;
    let v = Arc::new(AppendOnlyVec::<u64>::new());
    let mut threads = Vec::new();
    const N: u64 = 100;
    for thread_num in 0..N {
        let v = v.clone();
        threads.push(std::thread::spawn(move || {
            let which1 = v.push(thread_num);
            let which2 = v.push(thread_num);
            assert_eq!(v[which1 as usize], thread_num);
            assert_eq!(v[which2 as usize], thread_num);
        }));
    }
    for t in threads {
        t.join().ok();
    }
    for thread_num in 0..N {
        assert_eq!(2, v.iter().copied().filter(|&x| x == thread_num).count());
    }
}