1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/*!

**rust iterators that yield
[generalized cosine](https://snd.github.io/apodize/apodize/fn.cosine_iter.html),
[hanning](https://snd.github.io/apodize/apodize/fn.hanning_iter.html),
[hamming](https://snd.github.io/apodize/apodize/fn.hamming_iter.html),
[blackman](https://snd.github.io/apodize/apodize/fn.blackman_iter.html),
[nuttall](https://snd.github.io/apodize/apodize/fn.nuttall_iter.html)
and
[triangular](https://snd.github.io/apodize/apodize/fn.triangular_iter.html)
windows**

useful for
smoothing the sharp discontinuities at the edges (beginning and end)
of each slice of samples when doing a
[short time fourier transform](https://en.wikipedia.org/wiki/Short-time_Fourier_transform).
windowing also improves temporal resolution by making
the signal near the time
being analyzed have higher weight than the signal
further away from the time being analyzed.

to use add `apodize = "*"`
to the `[dependencies]` section of your `Cargo.toml` and call `extern crate apodize;` in your code.

all functions use `f64`s.
previously they were generic over the floating type used.
this was removed because it introduced a lot of complexity.
if you need `f32`s just `.map(|x| x as f32)` over the iterator.

## example

you will most likely want to collect the yielded values
in a vector and then multiply that window vector repeatedly with some
data vectors to apodize them.

here is an example of that for a hanning window (hamming, blackman and nuttall are analogous).

```
use std::ops::Mul;

#[macro_use]
extern crate nalgebra;
use nalgebra::{ApproxEq, DVec};

#[macro_use]
extern crate apodize;
use apodize::{hanning_iter};

fn main() {
    // create a hanning window iterator of size 7
    // and collect the values it yields in an nalgebra::DVec.
    let window = hanning_iter(7).collect::<DVec<_>>();

    assert_approx_eq_ulps!(
        window,
        dvec![
            0.0,
            0.24999999999999994,
            0.7499999999999999,
            1.0,
            0.7500000000000002,
            0.25,
            0.0],
        10);

    // some data we want to apodize (multiply with the window)
    let data: DVec<f64> = dvec![1., 2., 3., 4., 5., 6., 7.];

    // multiply data with window
    let windowed_data = window.mul(data);

    assert_approx_eq_ulps!(
        windowed_data,
        dvec![
            0.0,
            0.4999999999999999,
            2.2499999999999996,
            4.0,
            3.750000000000001,
            1.5,
            0.0],
        10);
}
```
*/

use std::f64::consts::PI;

extern crate num;
use num::{FromPrimitive};

macro_rules! f64_from_usize {
    ($val:expr) => {
        <f64>::from_usize($val)
            .expect("type `f64` can't represent a specific value of type `usize` on this architecture. use a smaller window size!");
    }
}

/// build an `nalgebra::DVec` as easy as a `std::Vec`.
/// for shorter, more readable code in tests and examples.
#[macro_export]
macro_rules! dvec {
    ($( $x:expr ),*) => { DVec {at: vec![$($x),*]} };
    ($($x:expr,)*) => { dvec![$($x),*] };
}

/// holds the window coefficients and
/// iteration state of an iterator for a cosine window
pub struct CosineWindowIter {
    /// coefficient `a` of the cosine window
    pub a: f64,
    /// coefficient `b` of the cosine window
    pub b: f64,
    /// coefficient `c` of the cosine window
    pub c: f64,
    /// coefficient `d` of the cosine window
    pub d: f64,
    /// the current `index` of the iterator
    pub index: usize,
    /// `size` of the cosine window
    pub size: usize,
}

impl Iterator for CosineWindowIter {
    type Item = f64;

    #[inline]
    fn next(&mut self) -> Option<f64> {
        if self.index == self.size {
            return None;
        }
        let index = self.index;
        self.index += 1;
        Some(cosine_at(self.a,
                       self.b,
                       self.c,
                       self.d,
                       self.size,
                       index))
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let remaining = self.size - self.index;
        (remaining, Some(remaining))
    }
}

impl ExactSizeIterator for CosineWindowIter {
    #[inline]
    fn len(&self) -> usize { self.size }
}

/// returns the value of the [cosine
/// window](https://en.wikipedia.org/wiki/Window_function#Higher-order_generalized_cosine_windows)
/// of `size`
/// with the coefficients `a`, `b`, `c` and `d`
/// at `index`
/// # Panics
/// panics unless `1 < size`
#[inline]
pub fn cosine_at(
    a: f64,
    b: f64,
    c: f64,
    d: f64,
    size: usize,
    index: usize
) -> f64
{
    let x = (PI * f64_from_usize!(index)) / (f64_from_usize!(size) - 1.);
    let b_ = b * (2. * x).cos();
    let c_ = c * (4. * x).cos();
    let d_ = d * (6. * x).cos();
    (a - b_) + (c_ - d_)
}

/// returns an iterator that yields the values for a [cosine
/// window](https://en.wikipedia.org/wiki/Window_function#Hann_.28Hanning.29_window) of `size`
/// with the coefficients `a`, `b`, `c` and `d`
/// # Panics
/// panics unless `1 < size`
pub fn cosine_iter(
    a: f64,
    b: f64,
    c: f64,
    d: f64,
    size: usize)
    -> CosineWindowIter {
        assert!(1 < size);
        CosineWindowIter {
            a: a,
            b: b,
            c: c,
            d: d,
            index: 0,
            size: size,
        }
    }

/// returns an iterator that yields the values for a [hanning
/// window](https://en.wikipedia.org/wiki/Window_function#Hann_.28Hanning.29_window) of `size`
/// # Panics
/// panics unless `1 < size`
pub fn hanning_iter(size: usize) -> CosineWindowIter {
    cosine_iter(0.5, 0.5, 0., 0., size)
}

/// returns an iterator that yields the values for a [hamming
/// window](https://en.wikipedia.org/wiki/Window_function#Hamming_window) of `size`
/// # Panics
/// panics unless `1 < size`
pub fn hamming_iter(size: usize) -> CosineWindowIter {
    cosine_iter(0.54, 0.46, 0., 0., size)
}

/// returns an iterator that yields the values for a [blackman
/// window](https://en.wikipedia.org/wiki/Window_function#Blackman_windows) of `size`
/// # Panics
/// panics unless `1 < size`
pub fn blackman_iter(size: usize) -> CosineWindowIter {
    cosine_iter(0.35875, 0.48829, 0.14128, 0.01168, size)
}

/// returns an iterator that yields the values for a [nuttall
/// window](https://en.wikipedia.org/wiki/Window_function#Nuttall_window.2C_continuous_first_derivative) of `size`
/// # Panics
/// panics unless `1 < size`
pub fn nuttall_iter(size: usize) -> CosineWindowIter {
    cosine_iter(0.355768, 0.487396, 0.144232, 0.012604, size)
}

/// holds the iteration state of an iterator for a triangular window
pub struct TriangularWindowIter {
    pub l: usize,
    /// the current `index` of the iterator
    pub index: usize,
    /// `size` of the triangular window
    pub size: usize,
}

/// returns the value of the
/// [triangular window]
/// (https://en.wikipedia.org/wiki/Window_function#Triangular_window)
/// of `size`
/// at `index`
#[inline]
pub fn triangular_at(l: usize, size: usize, index: usize) -> f64 {
    // ends with zeros if l == size - 1
    // if l == size - 1 && index == 0 then 1 - 1 / 1 == 0
    // if l == size - 1 && index == size - 1 then 1 - 0 / 1 == 0
    1. - (
        (f64_from_usize!(index) - (f64_from_usize!(size) - 1.) / 2.)
        /
        (f64_from_usize!(l) / 2.)
    ).abs()
}

impl Iterator for TriangularWindowIter
{
    type Item = f64;

    #[inline]
    fn next(&mut self) -> Option<f64> {
        if self.index == self.size {
            return None;
        }
        let index = self.index;
        self.index += 1;
        Some(triangular_at(self.l, self.size, index))
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let remaining = self.size - self.index;
        (remaining, Some(remaining))
    }
}

impl ExactSizeIterator for TriangularWindowIter {
    #[inline]
    fn len(&self) -> usize { self.size }
}

/// returns an iterator that yields the values for a [triangular
/// window](https://en.wikipedia.org/wiki/Window_function#Triangular_window)
/// if `l = size - 1` then the outermost values of the window are `0`.
/// if `l = size` then the outermost values of the window are higher.
/// if `l = size + 1` then the outermost values of the window are even higher.
/// # Panics
/// panics unless `0 < size`
pub fn triangular_iter(size: usize) -> TriangularWindowIter {
    assert!(0 < size);
    TriangularWindowIter {
        l: size,
        size: size,
        index: 0,
    }
}