1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
use apint::{ApInt};
use digit::{Bit};
use digit;
use errors::{Result};
use apint::utils::{
	DataAccess,
	DataAccessMut
};
use bitpos::{BitPos};
use traits::{Width};
use checks;
use utils::{try_forward_bin_mut_impl, forward_mut_impl};

use std::ops::{
	Not,
	BitAnd,
	BitOr,
	BitXor,
	BitAndAssign,
	BitOrAssign,
	BitXorAssign
};

/// # Bitwise Operations
impl ApInt {
	/// Flips all bits of `self` and returns the result.
	pub fn into_bitnot(self) -> Self {
		forward_mut_impl(self, ApInt::bitnot)
	}

	/// Flip all bits of this `ApInt` inplace.
	pub fn bitnot(&mut self) {
		self.modify_digits(|digit| digit.not_inplace());
		self.clear_unused_bits();
	}

	/// Tries to bit-and assign this `ApInt` inplace to `rhs`
	/// and returns the result.
	/// 
	/// **Note:** This forwards to
	/// [`checked_bitand`](struct.ApInt.html#method.checked_bitand).
	/// 
	/// # Errors
	/// 
	/// If `self` and `rhs` have unmatching bit widths.
	pub fn into_checked_bitand(self, rhs: &ApInt) -> Result<ApInt> {
		try_forward_bin_mut_impl(self, rhs, ApInt::checked_bitand_assign)
	}

	/// Bit-and assigns all bits of this `ApInt` with the bits of `rhs`.
	/// 
	/// **Note:** This operation is inplace of `self` and won't allocate memory.
	/// 
	/// # Errors
	/// 
	/// If `self` and `rhs` have unmatching bit widths.
	pub fn checked_bitand_assign(&mut self, rhs: &ApInt) -> Result<()> {
		self.modify_zipped_digits(rhs, |l, r| *l &= r)
	}

	/// Tries to bit-and assign this `ApInt` inplace to `rhs`
	/// and returns the result.
	/// 
	/// **Note:** This forwards to
	/// [`checked_bitor`](struct.ApInt.html#method.checked_bitor).
	/// 
	/// # Errors
	/// 
	/// If `self` and `rhs` have unmatching bit widths.
	pub fn into_checked_bitor(self, rhs: &ApInt) -> Result<ApInt> {
		try_forward_bin_mut_impl(self, rhs, ApInt::checked_bitor_assign)
	}

	/// Bit-or assigns all bits of this `ApInt` with the bits of `rhs`.
	/// 
	/// **Note:** This operation is inplace of `self` and won't allocate memory.
	/// 
	/// # Errors
	/// 
	/// If `self` and `rhs` have unmatching bit widths.
	pub fn checked_bitor_assign(&mut self, rhs: &ApInt) -> Result<()> {
		self.modify_zipped_digits(rhs, |l, r| *l |= r)
	}

	/// Tries to bit-xor assign this `ApInt` inplace to `rhs`
	/// and returns the result.
	/// 
	/// **Note:** This forwards to
	/// [`checked_bitxor`](struct.ApInt.html#method.checked_bitxor).
	/// 
	/// # Errors
	/// 
	/// If `self` and `rhs` have unmatching bit widths.
	pub fn into_checked_bitxor(self, rhs: &ApInt) -> Result<ApInt> {
		try_forward_bin_mut_impl(self, rhs, ApInt::checked_bitxor_assign)
	}

	/// Bit-xor assigns all bits of this `ApInt` with the bits of `rhs`.
	/// 
	/// **Note:** This operation is inplace of `self` and won't allocate memory.
	/// 
	/// # Errors
	/// 
	/// If `self` and `rhs` have unmatching bit widths.
	pub fn checked_bitxor_assign(&mut self, rhs: &ApInt) -> Result<()> {
		self.modify_zipped_digits(rhs, |l, r| *l ^= r)
	}
}

/// # Bitwise Access
impl ApInt {
	/// Returns the bit at the given bit position `pos`.
	/// 
	/// This returns
	/// 
	/// - `Bit::Set` if the bit at `pos` is `1`
	/// - `Bit::Unset` otherwise
	/// 
	/// # Errors
	/// 
	/// - If `pos` is not a valid bit position for the width of this `ApInt`.
	pub fn get_bit_at<P>(&self, pos: P) -> Result<Bit>
		where P: Into<BitPos>
	{
		let pos = pos.into();
		checks::verify_bit_access(self, pos)?;
		match self.access_data() {
			DataAccess::Inl(digit) => digit.get(pos),
			DataAccess::Ext(digits) => {
				let (digit_pos, bit_pos) = pos.to_digit_and_bit_pos();
				digits[digit_pos].get(bit_pos)
			}
		}
	}

	/// Sets the bit at the given bit position `pos` to one (`1`).
	/// 
	/// # Errors
	/// 
	/// - If `pos` is not a valid bit position for the width of this `ApInt`.
	pub fn set_bit_at<P>(&mut self, pos: P) -> Result<()>
		where P: Into<BitPos>
	{
		let pos = pos.into();
		checks::verify_bit_access(self, pos)?;
		match self.access_data_mut() {
			DataAccessMut::Inl(digit) => digit.set(pos),
			DataAccessMut::Ext(digits) => {
				let (digit_pos, bit_pos) = pos.to_digit_and_bit_pos();
				digits[digit_pos].set(bit_pos)
			}
		}
	}

	/// Sets the bit at the given bit position `pos` to zero (`0`).
	/// 
	/// # Errors
	/// 
	/// - If `pos` is not a valid bit position for the width of this `ApInt`.
	pub fn unset_bit_at<P>(&mut self, pos: P) -> Result<()>
		where P: Into<BitPos>
	{
		let pos = pos.into();
		checks::verify_bit_access(self, pos)?;
		match self.access_data_mut() {
			DataAccessMut::Inl(digit) => digit.unset(pos),
			DataAccessMut::Ext(digits) => {
				let (digit_pos, bit_pos) = pos.to_digit_and_bit_pos();
				digits[digit_pos].unset(bit_pos)
			}
		}
	}

	/// Flips the bit at the given bit position `pos`.
	/// 
	/// # Note
	/// 
	/// - If the bit at the given position was `0` it will be `1`
	///   after this operation and vice versa.
	/// 
	/// # Errors
	/// 
	/// - If `pos` is not a valid bit position for the width of this `ApInt`.
	pub fn flip_bit_at<P>(&mut self, pos: P) -> Result<()>
		where P: Into<BitPos>
	{
		let pos = pos.into();
		checks::verify_bit_access(self, pos)?;
		match self.access_data_mut() {
			DataAccessMut::Inl(digit) => digit.flip(pos),
			DataAccessMut::Ext(digits) => {
				let (digit_pos, bit_pos) = pos.to_digit_and_bit_pos();
				digits[digit_pos].flip(bit_pos)
			}
		}
	}

	/// Sets all bits of this `ApInt` to one (`1`).
	pub fn set_all(&mut self) {
		self.modify_digits(|digit| digit.set_all());
		self.clear_unused_bits();
	}

	/// Returns``true` if all bits in the `ApInt` are set.
	pub fn is_all_set(&self) -> bool {
		let (msb, rest) = self.split_most_significant_digit();
		if let Some(excess_bits) = self.width().excess_bits() {
			if msb.repr().count_ones() as usize != excess_bits {
				return false
			}
		}
		rest.iter().all(|d| d.is_all_set())
	}

	/// Sets all bits of this `ApInt` to zero (`0`).
	pub fn unset_all(&mut self) {
		self.modify_digits(|digit| digit.unset_all());
	}

	/// Returns `true` if all bits in the `ApInt` are unset.
	pub fn is_all_unset(&self) -> bool {
		self.is_zero()
	}

	/// Flips all bits of this `ApInt`.
	pub fn flip_all(&mut self) {
		// TODO: remove since equal to ApInt::checked_bitnot_assign
		self.modify_digits(|digit| digit.flip_all());
		self.clear_unused_bits();
	}

	/// Returns the sign bit of this `ApInt`.
	/// 
	/// **Note:** This is equal to the most significant bit of this `ApInt`.
	pub fn sign_bit(&self) -> Bit {
		self.most_significant_bit()
	}

	/// Sets the sign bit of this `ApInt` to one (`1`).
	pub fn set_sign_bit(&mut self) {
		let sign_bit_pos = self.width().sign_bit_pos();
		self.set_bit_at(sign_bit_pos)
		    .expect("`BitWidth::sign_bit_pos` always returns a valid `BitPos`
			         for usage in the associated `ApInt` for operating on bits.")
	}

	/// Sets the sign bit of this `ApInt` to zero (`0`).
	pub fn unset_sign_bit(&mut self) {
		let sign_bit_pos = self.width().sign_bit_pos();
		self.unset_bit_at(sign_bit_pos)
		    .expect("`BitWidth::sign_bit_pos` always returns a valid `BitPos`
			         for usage in the associated `ApInt` for operating on bits.")
	}

	/// Flips the sign bit of this `ApInt`.
	/// 
	/// # Note
	/// 
	/// - If the sign bit was `0` it will be `1` after this operation and vice versa.
	/// - Depending on the interpretation of the `ApInt` this
	///   operation changes its signedness.
	pub fn flip_sign_bit(&mut self) {
		let sign_bit_pos = self.width().sign_bit_pos();
		self.flip_bit_at(sign_bit_pos)
		    .expect("`BitWidth::sign_bit_pos` always returns a valid `BitPos`
			         for usage in the associated `ApInt` for operating on bits.")
	}
}

/// # Bitwise utility methods.
impl ApInt {
	/// Returns the number of ones in the binary representation of this `ApInt`.
	pub fn count_ones(&self) -> usize {
		self.as_digit_slice()
		    .into_iter()
		    .map(|d| d.repr().count_ones() as usize)
		    .sum::<usize>()
	}

	/// Returns the number of zeros in the binary representation of this `ApInt`.
	pub fn count_zeros(&self) -> usize {
		let zeros = self.as_digit_slice()
			.into_iter()
		    .map(|d| d.repr().count_zeros() as usize)
			.sum::<usize>();
		// Since `ApInt` instances with width's that are no powers of two
		// have unused excess bits that are always zero we need to cut them off
		// for a correct implementation of this operation.
		zeros - (digit::BITS - self.width().excess_bits().unwrap_or(digit::BITS))
	}

	/// Returns the number of leading zeros in the binary representation of this `ApInt`.
	pub fn leading_zeros(&self) -> usize {
		let mut zeros = 0;
		for d in self.as_digit_slice().into_iter().rev() {
			let leading_zeros = d.repr().leading_zeros() as usize;
			zeros += leading_zeros;
			if leading_zeros != digit::BITS {
				break;
			}
		}
		zeros - (digit::BITS - self.width().excess_bits().unwrap_or(digit::BITS))
	}

	/// Returns the number of trailing zeros in the binary representation of this `ApInt`.
	pub fn trailing_zeros(&self) -> usize {
		let mut zeros = 0;
		for d in self.as_digit_slice() {
			let trailing_zeros = d.repr().trailing_zeros() as usize;
			zeros += trailing_zeros;
			if trailing_zeros != digit::BITS {
				break;
			}
		}
		if zeros >= self.width().to_usize() {
			zeros -= digit::BITS - self.width().excess_bits().unwrap_or(digit::BITS);
		}
		zeros
	}
}

//  ===========================================================================
//  `Not` (bitwise) impls
//  ===========================================================================

impl Not for ApInt {
	type Output = ApInt;

	fn not(self) -> Self::Output {
		forward_mut_impl(self, ApInt::bitnot)
	}
}

//  ===========================================================================
//  `BitAnd` impls
//  ===========================================================================

impl<'a> BitAnd<&'a ApInt> for ApInt {
    type Output = ApInt;

    fn bitand(self, rhs: &'a ApInt) -> Self::Output {
        self.into_checked_bitand(rhs).unwrap()
    }
}

impl<'a, 'b> BitAnd<&'a ApInt> for &'b ApInt {
    type Output = ApInt;

    fn bitand(self, rhs: &'a ApInt) -> Self::Output {
        self.clone().into_checked_bitand(rhs).unwrap()
    }
}

impl<'a, 'b> BitAnd<&'a ApInt> for &'b mut ApInt {
    type Output = ApInt;

    fn bitand(self, rhs: &'a ApInt) -> Self::Output {
        self.clone().into_checked_bitand(rhs).unwrap()
    }
}

//  ===========================================================================
//  `BitOr` impls
//  ===========================================================================

impl<'a> BitOr<&'a ApInt> for ApInt {
    type Output = ApInt;

    fn bitor(self, rhs: &'a ApInt) -> Self::Output {
        self.into_checked_bitor(rhs).unwrap()
    }
}

impl<'a, 'b> BitOr<&'a ApInt> for &'b ApInt {
    type Output = ApInt;

    fn bitor(self, rhs: &'a ApInt) -> Self::Output {
        self.clone().into_checked_bitor(rhs).unwrap()
    }
}

impl<'a, 'b> BitOr<&'a ApInt> for &'b mut ApInt {
    type Output = ApInt;

    fn bitor(self, rhs: &'a ApInt) -> Self::Output {
        self.clone().into_checked_bitor(rhs).unwrap()
    }
}

//  ===========================================================================
//  `BitXor` impls
//  ===========================================================================

impl<'a> BitXor<&'a ApInt> for ApInt {
    type Output = ApInt;

    fn bitxor(self, rhs: &'a ApInt) -> Self::Output {
        self.into_checked_bitxor(rhs).unwrap()
    }
}

impl<'a, 'b> BitXor<&'a ApInt> for &'b ApInt {
    type Output = ApInt;

    fn bitxor(self, rhs: &'a ApInt) -> Self::Output {
        self.clone().into_checked_bitxor(rhs).unwrap()
    }
}

impl<'a, 'b> BitXor<&'a ApInt> for &'b mut ApInt {
    type Output = ApInt;

    fn bitxor(self, rhs: &'a ApInt) -> Self::Output {
        self.clone().into_checked_bitxor(rhs).unwrap()
    }
}

//  ===========================================================================
//  `BitAndAssign`, `BitOrAssign` and `BitXorAssign` impls
//  ===========================================================================

impl<'a> BitAndAssign<&'a ApInt> for ApInt {
    fn bitand_assign(&mut self, rhs: &'a ApInt) {
        self.checked_bitand_assign(rhs).unwrap();
    }
}

impl<'a> BitOrAssign<&'a ApInt> for ApInt {
    fn bitor_assign(&mut self, rhs: &'a ApInt) {
        self.checked_bitor_assign(rhs).unwrap();
    }
}

impl<'a> BitXorAssign<&'a ApInt> for ApInt {
    fn bitxor_assign(&mut self, rhs: &'a ApInt) {
        self.checked_bitxor_assign(rhs).unwrap();
    }
}

#[cfg(test)]
mod tests {
	use super::*;

	use bitwidth::{BitWidth};

	#[test]
	fn count_ones() {
		assert_eq!(ApInt::zero(BitWidth::w1()).count_ones(), 0);
		assert_eq!(ApInt::zero(BitWidth::w8()).count_ones(), 0);
		assert_eq!(ApInt::zero(BitWidth::w16()).count_ones(), 0);
		assert_eq!(ApInt::zero(BitWidth::w32()).count_ones(), 0);
		assert_eq!(ApInt::zero(BitWidth::w64()).count_ones(), 0);
		assert_eq!(ApInt::zero(BitWidth::w128()).count_ones(), 0);

		assert_eq!(ApInt::one(BitWidth::w1()).count_ones(), 1);
		assert_eq!(ApInt::one(BitWidth::w8()).count_ones(), 1);
		assert_eq!(ApInt::one(BitWidth::w16()).count_ones(), 1);
		assert_eq!(ApInt::one(BitWidth::w32()).count_ones(), 1);
		assert_eq!(ApInt::one(BitWidth::w64()).count_ones(), 1);
		assert_eq!(ApInt::one(BitWidth::w128()).count_ones(), 1);

		assert_eq!(ApInt::signed_min_value(BitWidth::w1()).count_ones(), 1);
		assert_eq!(ApInt::signed_min_value(BitWidth::w8()).count_ones(), 1);
		assert_eq!(ApInt::signed_min_value(BitWidth::w16()).count_ones(), 1);
		assert_eq!(ApInt::signed_min_value(BitWidth::w32()).count_ones(), 1);
		assert_eq!(ApInt::signed_min_value(BitWidth::w64()).count_ones(), 1);
		assert_eq!(ApInt::signed_min_value(BitWidth::w128()).count_ones(), 1);

		assert_eq!(ApInt::signed_max_value(BitWidth::w1()).count_ones(), 0);
		assert_eq!(ApInt::signed_max_value(BitWidth::w8()).count_ones(), 8 - 1);
		assert_eq!(ApInt::signed_max_value(BitWidth::w16()).count_ones(), 16 - 1);
		assert_eq!(ApInt::signed_max_value(BitWidth::w32()).count_ones(), 32 - 1);
		assert_eq!(ApInt::signed_max_value(BitWidth::w64()).count_ones(), 64 - 1);
		assert_eq!(ApInt::signed_max_value(BitWidth::w128()).count_ones(), 128 - 1);
	}

	#[test]
	fn count_zeros() {
		assert_eq!(ApInt::zero(BitWidth::w1()).count_zeros(), 1);
		assert_eq!(ApInt::zero(BitWidth::w8()).count_zeros(), 8);
		assert_eq!(ApInt::zero(BitWidth::w16()).count_zeros(), 16);
		assert_eq!(ApInt::zero(BitWidth::w32()).count_zeros(), 32);
		assert_eq!(ApInt::zero(BitWidth::w64()).count_zeros(), 64);
		assert_eq!(ApInt::zero(BitWidth::w128()).count_zeros(), 128);

		assert_eq!(ApInt::one(BitWidth::w1()).count_zeros(), 0);
		assert_eq!(ApInt::one(BitWidth::w8()).count_zeros(), 8 - 1);
		assert_eq!(ApInt::one(BitWidth::w16()).count_zeros(), 16 - 1);
		assert_eq!(ApInt::one(BitWidth::w32()).count_zeros(), 32 - 1);
		assert_eq!(ApInt::one(BitWidth::w64()).count_zeros(), 64 - 1);
		assert_eq!(ApInt::one(BitWidth::w128()).count_zeros(), 128 - 1);

		assert_eq!(ApInt::signed_min_value(BitWidth::w1()).count_zeros(), 0);
		assert_eq!(ApInt::signed_min_value(BitWidth::w8()).count_zeros(), 8 - 1);
		assert_eq!(ApInt::signed_min_value(BitWidth::w16()).count_zeros(), 16 - 1);
		assert_eq!(ApInt::signed_min_value(BitWidth::w32()).count_zeros(), 32 - 1);
		assert_eq!(ApInt::signed_min_value(BitWidth::w64()).count_zeros(), 64 - 1);
		assert_eq!(ApInt::signed_min_value(BitWidth::w128()).count_zeros(), 128 - 1);

		assert_eq!(ApInt::signed_max_value(BitWidth::w1()).count_zeros(), 1);
		assert_eq!(ApInt::signed_max_value(BitWidth::w8()).count_zeros(), 1);
		assert_eq!(ApInt::signed_max_value(BitWidth::w16()).count_zeros(), 1);
		assert_eq!(ApInt::signed_max_value(BitWidth::w32()).count_zeros(), 1);
		assert_eq!(ApInt::signed_max_value(BitWidth::w64()).count_zeros(), 1);
		assert_eq!(ApInt::signed_max_value(BitWidth::w128()).count_zeros(), 1);
	}

	#[test]
	fn leading_zeros() {
		assert_eq!(ApInt::zero(BitWidth::w1()).leading_zeros(), 1);
		assert_eq!(ApInt::zero(BitWidth::w8()).leading_zeros(), 8);
		assert_eq!(ApInt::zero(BitWidth::w16()).leading_zeros(), 16);
		assert_eq!(ApInt::zero(BitWidth::w32()).leading_zeros(), 32);
		assert_eq!(ApInt::zero(BitWidth::w64()).leading_zeros(), 64);
		assert_eq!(ApInt::zero(BitWidth::w128()).leading_zeros(), 128);

		assert_eq!(ApInt::one(BitWidth::w1()).leading_zeros(), 0);
		assert_eq!(ApInt::one(BitWidth::w8()).leading_zeros(), 8 - 1);
		assert_eq!(ApInt::one(BitWidth::w16()).leading_zeros(), 16 - 1);
		assert_eq!(ApInt::one(BitWidth::w32()).leading_zeros(), 32 - 1);
		assert_eq!(ApInt::one(BitWidth::w64()).leading_zeros(), 64 - 1);
		assert_eq!(ApInt::one(BitWidth::w128()).leading_zeros(), 128 - 1);

		assert_eq!(ApInt::signed_min_value(BitWidth::w1()).leading_zeros(), 0);
		assert_eq!(ApInt::signed_min_value(BitWidth::w8()).leading_zeros(), 0);
		assert_eq!(ApInt::signed_min_value(BitWidth::w16()).leading_zeros(), 0);
		assert_eq!(ApInt::signed_min_value(BitWidth::w32()).leading_zeros(), 0);
		assert_eq!(ApInt::signed_min_value(BitWidth::w64()).leading_zeros(), 0);
		assert_eq!(ApInt::signed_min_value(BitWidth::w128()).leading_zeros(), 0);

		assert_eq!(ApInt::signed_max_value(BitWidth::w1()).leading_zeros(), 1);
		assert_eq!(ApInt::signed_max_value(BitWidth::w8()).leading_zeros(), 1);
		assert_eq!(ApInt::signed_max_value(BitWidth::w16()).leading_zeros(), 1);
		assert_eq!(ApInt::signed_max_value(BitWidth::w32()).leading_zeros(), 1);
		assert_eq!(ApInt::signed_max_value(BitWidth::w64()).leading_zeros(), 1);
		assert_eq!(ApInt::signed_max_value(BitWidth::w128()).leading_zeros(), 1);
	}

	#[test]
	fn trailing_zeros() {
		assert_eq!(ApInt::zero(BitWidth::w1()).trailing_zeros(), 1);
		assert_eq!(ApInt::zero(BitWidth::w8()).trailing_zeros(), 8);
		assert_eq!(ApInt::zero(BitWidth::w16()).trailing_zeros(), 16);
		assert_eq!(ApInt::zero(BitWidth::w32()).trailing_zeros(), 32);
		assert_eq!(ApInt::zero(BitWidth::w64()).trailing_zeros(), 64);
		assert_eq!(ApInt::zero(BitWidth::w128()).trailing_zeros(), 128);

		assert_eq!(ApInt::one(BitWidth::w1()).trailing_zeros(), 0);
		assert_eq!(ApInt::one(BitWidth::w8()).trailing_zeros(), 0);
		assert_eq!(ApInt::one(BitWidth::w16()).trailing_zeros(), 0);
		assert_eq!(ApInt::one(BitWidth::w32()).trailing_zeros(), 0);
		assert_eq!(ApInt::one(BitWidth::w64()).trailing_zeros(), 0);
		assert_eq!(ApInt::one(BitWidth::w128()).trailing_zeros(), 0);

		assert_eq!(ApInt::signed_min_value(BitWidth::w1()).trailing_zeros(), 0);
		assert_eq!(ApInt::signed_min_value(BitWidth::w8()).trailing_zeros(), 8 - 1);
		assert_eq!(ApInt::signed_min_value(BitWidth::w16()).trailing_zeros(), 16 - 1);
		assert_eq!(ApInt::signed_min_value(BitWidth::w32()).trailing_zeros(), 32 - 1);
		assert_eq!(ApInt::signed_min_value(BitWidth::w64()).trailing_zeros(), 64 - 1);
		assert_eq!(ApInt::signed_min_value(BitWidth::w128()).trailing_zeros(), 128 - 1);

		assert_eq!(ApInt::signed_max_value(BitWidth::w1()).trailing_zeros(), 1);
		assert_eq!(ApInt::signed_max_value(BitWidth::w8()).trailing_zeros(), 0);
		assert_eq!(ApInt::signed_max_value(BitWidth::w16()).trailing_zeros(), 0);
		assert_eq!(ApInt::signed_max_value(BitWidth::w32()).trailing_zeros(), 0);
		assert_eq!(ApInt::signed_max_value(BitWidth::w64()).trailing_zeros(), 0);
		assert_eq!(ApInt::signed_max_value(BitWidth::w128()).trailing_zeros(), 0);
	}

	mod is_all_set {
		use super::*;

		#[test]
		fn simple_false() {
			let input = ApInt::from(0b0001_1011_0110_0111_u16);
			assert_eq!(input.width(), BitWidth::w16());
			assert_eq!(input.count_ones(), 9);
			assert!(!input.is_all_set());
		}

		#[test]
		fn simple_true() {
			let input = ApInt::all_set(BitWidth::w32());
			assert_eq!(input.width(), BitWidth::w32());
			assert_eq!(input.count_ones(), 32);
			assert!(input.is_all_set());
		}
	}

	mod is_all_unset {
		use super::*;

		#[test]
		fn simple_false() {
			let input = ApInt::from(0b0001_1011_0110_0111_u16);
			assert_eq!(input.width(), BitWidth::w16());
			assert_eq!(input.count_ones(), 9);
			assert_eq!(input.is_zero(), input.is_all_unset());
		}

		#[test]
		fn simple_true() {
			let input = ApInt::all_unset(BitWidth::w32());
			assert_eq!(input.width(), BitWidth::w32());
			assert_eq!(input.count_ones(), 0);
			assert_eq!(input.is_zero(), input.is_all_unset());
		}
	}
}