1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
//! Provides various anonymous type constructs
//!
//! ## Macros
//!
//! * [`struct!`]: creates an instance of an anonymous struct.
//!
//! ```rust
//! use anony::r#struct;
//!
//! let items = vec![1, 3, 5];
//!
//! let x = r#struct! {
//!     color: "Red".to_owned(),
//!     // move the `items` variable to the struct
//!     items
//! };
//!
//! assert_eq!(x.color, "Red");
//! assert_eq!(x.items, [1, 3, 5]);
//! ```
//!
//! * [`tuple!`]: creates an instance of an anonymous tuple.
//!
//! ```rust
//! use anony::tuple;
//!
//! let items = vec![1, 3, 5];
//!
//! let x = tuple!("Red".to_owned(), items);
//!
//! assert_eq!(x.0, "Red");
//! assert_eq!(x.1, [1, 3, 5]);
//! ```
//!
//! * [`join!`] and [`join_cyclic!`]: join multiple futures. Require `future` feature.
//!
//! ```rust
//! # futures::executor::block_on(async {
//! use anony::join;
//!
//! assert_eq!(join!(async { 2 }, async { "123" }).await, (2, "123"));
//! # });
//! ```
//!
//! * [`try_join!`] and [`try_join_cyclic!`]: join multiple futures and short-circuit on "break" value. Require `future` feature.
//!
//! ```rust
//! # futures::executor::block_on(async {
//! use anony::try_join;
//!
//! assert_eq!(try_join!(async { Some(2) }, async { Some("123") }).await, Some((2, "123")));
//! assert_eq!(try_join!(async { Some(2) }, async { None::<i32> }).await, None);
//! # });
//! ```
//!
//! ## Example Macro Expansions
//!
//! <https://github.com/discreaminant2809/anony/blob/master/examples/expansions.rs>
//!
//! ## Features
//!
//! * `serde`: derives [`Serialize`] for anonymous structs and tuples. [serde] crate must exist in your crate.
//! * `future`: enables [`Future`] anonymous types, such as [`join!`].
//!
//! ## Disclaimer
//!
//! All macros in this crate are 100% hygienic.
//!
//! [`Serialize`]: https://docs.rs/serde/latest/serde/ser/trait.Serialize.html
//! [`Future`]: std::future::Future
//! [serde]: https://docs.rs/serde/latest/serde/index.html

#![deny(missing_docs)]
#![cfg_attr(docsrs, feature(doc_cfg))]

mod anonymous_struct;
#[cfg(feature = "future")]
mod join;
mod tuple;
mod utils;

use proc_macro as pm;
use proc_macro2 as pm2;

/// Creates an instance of an anonymous struct.
///
/// **Note**: if two instances are created from two different `r#struct!`s, they will guarantee belong to two differences anonymous structs
/// even if they have exactly the same set of fields (both names and types). You can clone an instance instead to get the same
/// fields and type for the cloned instance.
///
/// # Examples
///
/// Like how an instance of a normal struct is constructed, you can do the same with this macro:
/// ```
/// use anony::r#struct;
///
/// let address = "123 St. SW";
///
/// let o1 = r#struct! {
///     name: "Alice",
///     age: 28,
///     address,
/// };
///
/// assert_eq!(o1.name, "Alice");
/// assert_eq!(o1.age, 28);
/// assert_eq!(o1.address, "123 St. SW");
///
/// // other anonymous constructs are allowed too!
/// let _o2 = r#struct! {
///     closure: || 3,
///     future: async {
///         let x = "Hello, world!".to_owned();
///         std::future::ready(()).await;
///         x.len()
///     },
///     anonymous: r#struct! {
///         f1: 3.4,
///         f2: Box::new("123"),
///     },
/// };
/// ```
/// You can move fields one by one:
/// ```
/// use anony::r#struct;
///
/// let address = "123 St. SW".to_owned();
///
/// let o1 = r#struct! {
///     name: "Alice".to_owned(),
///     age: 28,
///     address,
/// };
///
/// let name = o1.name;
/// let age = o1.age;
/// let address = o1.address;
///
/// assert_eq!(name, "Alice");
/// assert_eq!(age, 28);
/// assert_eq!(address, "123 St. SW");
/// ```
/// Pinning projection (use `project_ref` for `Pin<&_>` and `project_mut` for `Pin<&mut _>`, like you use `pin-project` crate).
/// The struct created by `project_ref` (not `project_mut`) implements [`Clone`] and [`Copy`]:
/// ```
/// use std::pin::pin;
/// use std::future::Future;
/// use std::task::Context;
/// use std::task::Poll;
/// use anony::r#struct;
/// use futures::task::noop_waker;
///
/// let o1 = r#struct! {
///     fut: async {
///         let s = "10011001001";
///         s.matches("1").count()
///     }
/// };
///
/// let o1 = pin!(o1);
/// let waker = noop_waker();
/// let mut cx = Context::from_waker(&waker);
///
/// // Project to the `fut` field
/// assert_eq!(o1.project_mut().fut.poll(&mut cx), Poll::Ready(5));
/// ```
///
/// # Implemented traits
///
/// This struct implements the following if all of its fields are implemented them:
/// * All traits in [`std::cmp`]
/// * [`Debug`]
/// * [`Hash`]
/// * [`Clone`] and [`Copy`] (the cloned instance is guaranteed to have the same type as the source)
/// * [`Serialize`] (`serde` feature required)
///
/// [`Serialize`]: https://docs.rs/serde/latest/serde/ser/trait.Serialize.html
/// [`Debug`]: std::fmt::Debug
/// [`Hash`]: std::hash::Hash
#[proc_macro]
pub fn r#struct(token_stream: pm::TokenStream) -> pm::TokenStream {
    anonymous_struct::imp(token_stream)
        .unwrap_or_else(|e| e.into_compile_error())
        .into()
}

/// Create an instance of an anonymous tuple.
///
/// # Practicality
///
/// For 99.999999999999% of use cases, just use a normal tuple. This macro's only advantages are that it supports pinning projection
/// and it implements common traits for any arbitrary arities, not just limited up to 12-ary or 16-ary tuple. That's it!
///
/// # Examples
///
/// Like how an instance of a normal tuple is constructed, you can do the same with this macro:
/// ```rust
/// use anony::tuple;
///
/// let x = tuple!(123, "456");
///
/// assert_eq!(x.0, 123);
/// assert_eq!(x.1, "456");
/// ```
/// You can move fields one by one:
/// ```rust
/// use anony::tuple;
///
/// let address = "123 St. SW".to_owned();
///
/// let o1 = tuple!("Alice".to_owned(), 28, address);
///
/// let name = o1.0;
/// let age = o1.1;
/// let address = o1.2;
///
/// assert_eq!(name, "Alice");
/// assert_eq!(age, 28);
/// assert_eq!(address, "123 St. SW");
/// ```
/// Pinning projection (use `project_ref` for `Pin<&_>` and `project_mut` for `Pin<&mut _>`, like you use `pin-project` crate).
/// They return normal tuples:
/// ```rust
/// use std::pin::pin;
/// use std::future::Future;
/// use std::task::Context;
/// use std::task::Poll;
/// use anony::tuple;
/// use futures::task::noop_waker;
///
/// let o1 = tuple!(async {
///     let s = "10011001001";
///     s.matches("1").count()
/// });
///
/// let o1 = pin!(o1);
/// let waker = noop_waker();
/// let mut cx = Context::from_waker(&waker);
///
/// // Project to the first field
/// assert_eq!(o1.project_mut().0.poll(&mut cx), Poll::Ready(5));
/// ```
/// Convert to a normal tuple:
/// ```rust
/// use anony::tuple;
///
/// let x = tuple!(1, 2);
/// let y = x.into_tuple();
/// assert_eq!(y, (1, 2));
/// ```
///
/// # Implemented traits
///
/// This struct implements the following if all of its fields implement them:
/// * All traits in [`std::cmp`]
/// * [`Debug`]
/// * [`Hash`]
/// * [`Clone`] and [`Copy`] (the cloned instance is guaranteed to have the same type as the source)
/// * [`Serialize`] (`serde` feature required)
///
/// [`Serialize`]: https://docs.rs/serde/latest/serde/ser/trait.Serialize.html
/// [`Debug`]: std::fmt::Debug
/// [`Hash`]: std::hash::Hash
#[proc_macro]
pub fn tuple(token_stream: pm::TokenStream) -> pm::TokenStream {
    tuple::imp(token_stream)
        .unwrap_or_else(|e| e.into_compile_error())
        .into()
}

/// Returns a future that "joins" multiple futures that will be completed concurrently.
///
/// It's output is a tuple of input futures' outputs.
///
/// It is more efficient than awaiting futures like this: `(fut1.await, fut2.await, fut3.await)`, since these futures will be resolved
/// **sequencially** (`fut1` must be done first before awaiting `fut2`, and `fut3`). `join!(fut1, fut2, fut3).await` will poll every futures
/// on getting polled, which makes them concurrently awaited.
///
/// This future will always poll the first input future first, which is similar to the [futures]'s one.
/// For example, `join!(fut1, fut2, fut3)` always polls `fut1` first on being polled.
/// If fairness is your concern, consider using [`join_cyclic!`], which is less efficient but fairer.
///
/// [futures]: https://docs.rs/futures/latest/futures/macro.join.html
///
/// # Possible differences from other implementations
///
/// * `join!` returns an instance of an anonymous type implemented [`Future`](std::future::Future)
/// instead of requiring it to be inside an `async`. You will be warned if you neither
/// `.await`, [`poll`](std::future::Future::poll), nor return it.
///
/// * input futures are required to implement [`IntoFuture`](std::future::IntoFuture).
///
/// * the returned future (generally) has smaller size and is (generally) faster.
///
/// * the returned future is [`Unpin`] if all of the input futures are [`Unpin`].
///
/// # Examples
///
/// ```rust
/// # futures::executor::block_on(async {
/// use anony::join;
///
/// let a = async { 1 };
/// let b = async { 2 };
/// let c = async { 3 };
/// assert_eq!(join!(a, b, c).await, (1, 2, 3));
/// # });
/// ```
///
/// If you want to run a future (or more) while doing something else, this macro is a help! Note that you must put the
/// "something else" after every other futures you want to run:
///
/// ```rust
/// # #[tokio::main]
/// # async fn main() {
/// use anony::join;
/// use tokio::time::sleep;
/// use std::time::Duration;
///
/// async fn read_db() -> String {
///     sleep(Duration::from_secs(1)).await;
///     "My secret".into()
/// }
///
/// let (secret_value, _) = join!(read_db(), async {
///     // Your other tasks go here, maybe asynchronous or just blocking...
///     let a = 1;
///     let b = 2;
///     assert_eq!(a + b, 3);
/// }).await;
///
/// assert_eq!(secret_value, "My secret");
/// # }
/// ```
#[proc_macro]
#[cfg(feature = "future")]
#[cfg_attr(docsrs, doc(cfg(feature = "future")))]
pub fn join(token_stream: pm::TokenStream) -> pm::TokenStream {
    join::imp(token_stream, false, false)
        .unwrap_or_else(|e| e.into_compile_error())
        .into()
}

/// Returns a future that "joins" multiple futures that will be completed concurrently, using cycling polling strategy.
///
/// **Usage note**: If you are not sure which one to use (between this macro with [`join!`]), just use the latter.
///
/// It's output is a tuple of input futures' outputs.
///
/// It is more efficient than awaiting futures like this: `(fut1.await, fut2.await, fut3.await)`, since these futures will be resolved
/// **sequencially** (`fut1` must be done first before awaiting `fut2`, and `fut3`). `join!(fut1, fut2, fut3).await` will poll every futures
/// on getting polled, which makes them concurrently awaited.
///
/// This future will cycle the first future to be polled for each time it is polled, which is similar to the [tokio]'s one.
/// For example, `join!(fut1, fut2, fut3)` polls `fut1` first for the first time being polled, then it polls 'fut2' for the second time,
/// then `fut3` will be the first, then it rolls back to `fut1`, and so on. This strategy ensure fairness as it reduces the chance that
/// heavy futures may make other futures stuck.
/// If fairness is not your concern, consider using [`join!`], which is less fairer but more efficient.
///
/// [tokio]: https://docs.rs/tokio/latest/tokio/macro.join.html
///
/// # Possible differences from other implementations
///
/// * `join_cyclic!` returns an instance of an anonymous type implemented [`Future`](std::future::Future)
/// instead of requiring it to be inside an `async`. You will be warned if you neither
/// `.await`, [`poll`](std::future::Future::poll), nor return it.
///
/// * input futures are required to implement [`IntoFuture`](std::future::IntoFuture).
///
/// * the returned future (generally) has smaller size and is (generally) faster.
///
/// * the returned future is [`Unpin`] if all of the input futures are [`Unpin`].
///
/// # Examples
///
/// ```rust
/// # futures::executor::block_on(async {
/// use anony::join_cyclic;
///
/// let a = async { 1 };
/// let b = async { 2 };
/// let c = async { 3 };
/// assert_eq!(join_cyclic!(a, b, c).await, (1, 2, 3));
/// # });
/// ```
///
/// If you want to run a future (or more) while doing something else, this macro is a help! Note that you must put the
/// "something else" after every other futures you want to run:
///
/// ```rust
/// # #[tokio::main]
/// # async fn main() {
/// use anony::join_cyclic;
/// use tokio::time::sleep;
/// use std::time::Duration;
///
/// async fn read_db() -> String {
///     sleep(Duration::from_secs(1)).await;
///     "My secret".into()
/// }
///
/// let (secret_value, _) = join_cyclic!(read_db(), async {
///     // Your other tasks go here, maybe asynchronous or just blocking...
///     let a = 1;
///     let b = 2;
///     assert_eq!(a + b, 3);
/// }).await;
///
/// assert_eq!(secret_value, "My secret");
/// # }
/// ```
#[proc_macro]
#[cfg(feature = "future")]
#[cfg_attr(docsrs, doc(cfg(feature = "future")))]
pub fn join_cyclic(token_stream: pm::TokenStream) -> pm::TokenStream {
    join::imp(token_stream, false, true)
        .unwrap_or_else(|e| e.into_compile_error())
        .into()
}

/// Returns a future that "joins" multiple futures that will be completed concurrently. May short-circuit.
///
/// It is similar to [`join!`], except it resolves to "continue" value if all the futures resolve to "continue" value,
/// and resolves to "break" value if one of the futures resolves to "break" value. The "continue" and the "break" value
/// are dependent on the output type of all the futures.
///
/// Here's a basic overview of possible return types and return values:
///
/// | `(F0::Output, F1::Output, ...)` | `TryJoin::Output` | "Continue" value | "Break" value | Note
/// |-----------|-------------|-|-|-|
/// | `(Option<T0>, Option<T1>, ...)`  | `Option<(T0, T1, ...)>` | `Some` | `None` |
/// | `(Result<T0, E>, Result<T1, E>, ...)`  | `Result<(T0, T1, ...), E>` | `Ok` | `Err` | All errors must exactly be the same |
/// | `(ControlFlow<B, C0>, ControlFlow<B, C1>, ...)`  | `ControlFlow<B, (C0, C1, ...)>` | `Continue` | `Break` |
///
/// Formally, the trait bound is as the following, in term of [`Try`](std::ops::Try) and [`Residual`](std::ops::Residual) traits:
/// ```ignore
/// impl<
///         F0: Future,
///         F1: Future,
///         ...
///         FN: Future,
///         R: Residual<(
///             <F0::Output as Try>::Output,
///             <F1::Output as Try>::Output,
///             ...
///             <FN::Output as Try>::Output,
///         )>,
///     > Future for TryJoin<F0, F1, ..., FN, R>
/// where
///     F0::Output: Try<Residual = R>,
///     F1::Output: Try<Residual = R>,
///     ...
///     FN::Output: Try<Residual = R>,
/// {
///     type Output = R::TryType;
/// }
/// ```
///
/// It means that in theory, you can use `Poll<Result<T, E>>` and `Poll<Option<Result<T, E>>>` and mix up
/// with other futures returning `Result<T, E>`! However, to prevent such mess, the two types are NOT allowed
/// as of now. It may be lifted later when many unstable `try_*` methods/functions are stabilized.
///
/// If the standard library add more types implementing [`Try`](std::ops::Try) or [`Residual`](std::ops::Residual),
/// this macro will NOT be aware of it. You can only be waiting till this crate is updated, or both traits are stabilized.
///
/// # DISCLAIMER
/// This macro does NOT use nightly or beta channel. It is usable on stable release.
///
/// # Possible differences from other implementations
///
/// * `try_join!` returns an instance of an anonymous type implemented [`Future`](std::future::Future)
/// instead of requiring it to be inside an `async`. You will be warned if you neither
/// `.await`, [`poll`](std::future::Future::poll), nor return it.
///
/// * input futures are required to implement [`IntoFuture`](std::future::IntoFuture), and their outputs can be more than just
/// [`Result`] (see the first section above for the supported types).
///
/// * the returned future (generally) has smaller size and is (generally) faster.
///
/// * the returned future is [`Unpin`] if all of the input futures are [`Unpin`].
///
/// # Examples
/// ```
/// # futures::executor::block_on(async {
/// use anony::try_join;
///
/// let a = async { Some(1) };
/// let b = async { Some(2) };
/// let c = async { Some(3) };
/// assert_eq!(try_join!(a, b, c).await, Some((1, 2, 3)));
///
/// let a = async { Ok(4) };
/// let b = async { Err::<(), _>("5") };
/// assert_eq!(try_join!(a, b).await, Err("5"));
///
/// let a = async { Some("6") };
/// let b = async { None::<&str> };
/// let c = async { Some("7") };
/// assert_eq!(try_join!(a, b, c).await, None);
/// # });
/// ```
///
/// If you want to run a future (or more) while doing something else, this macro is a help! Note that you must put the
/// "something else" after every other futures you want to run:
///
/// ```rust
/// # use std::error::Error;
/// # #[tokio::main]
/// # async fn main() -> Result<(), Box<dyn Error>> {
/// use anony::try_join;
/// use tokio::time::sleep;
/// use std::time::Duration;
///
/// async fn read_db() -> Result<String, Box<dyn Error>> {
///     sleep(Duration::from_secs(1)).await;
///     Ok("My secret".into())
/// }
///
/// let (secret_value, _) = try_join!(read_db(), async {
///     // Your other tasks go here, maybe asynchronous or just blocking...
///     let a = 1;
///     let b = 2;
///     assert_eq!(a + b, 3);
///     Ok(())
/// }).await?;
///
/// assert_eq!(secret_value, "My secret");
/// # Ok(())
/// # }
/// ```
#[proc_macro]
#[cfg(feature = "future")]
#[cfg_attr(docsrs, doc(cfg(feature = "future")))]
pub fn try_join(token_stream: pm::TokenStream) -> pm::TokenStream {
    join::imp(token_stream, true, false)
        .unwrap_or_else(|e| e.into_compile_error())
        .into()
}

/// Returns a future that "joins" multiple futures that will be completed concurrently, using cycling polling strategy.
/// May short-circuit.
///
/// **Usage note**: If you are not sure which one to use (between this macro with [`try_join!`]), just use the latter.
///
/// It is similar to [`join_cyclic!`], except it resolves to "continue" value if all the futures resolve to "continue" value,
/// and resolves to "break" value if one of the futures resolves to "break" value. The "continue" and the "break" value
/// are dependent on the output type of all the futures.
///
/// Here's a basic overview of possible return types and return values:
///
/// | `(F0::Output, F1::Output, ...)` | `TryJoinCyclic::Output` | "Continue" value | "Break" value | Note
/// |-----------|-------------|-|-|-|
/// | `(Option<T0>, Option<T1>, ...)`  | `Option<(T0, T1, ...)>` | `Some` | `None` |
/// | `(Result<T0, E>, Result<T1, E>, ...)`  | `Result<(T0, T1, ...), E>` | `Ok` | `Err` | All errors must exactly be the same |
/// | `(ControlFlow<B, C0>, ControlFlow<B, C1>, ...)`  | `ControlFlow<B, (C0, C1, ...)>` | `Continue` | `Break` |
///
/// Formally, the trait bound is as the following, in term of [`Try`](std::ops::Try) and [`Residual`](std::ops::Residual) traits:
/// ```ignore
/// impl<
///         F0: Future,
///         F1: Future,
///         ...
///         FN: Future,
///         R: Residual<(
///             <F0::Output as Try>::Output,
///             <F1::Output as Try>::Output,
///             ...
///             <FN::Output as Try>::Output,
///         )>,
///     > Future for TryJoinCyclic<F0, F1, ..., FN, R>
/// where
///     F0::Output: Try<Residual = R>,
///     F1::Output: Try<Residual = R>,
///     ...
///     FN::Output: Try<Residual = R>,
/// {
///     type Output = R::TryType;
/// }
/// ```
///
/// It means that in theory, you can use `Poll<Result<T, E>>` and `Poll<Option<Result<T, E>>>` and mix up
/// with other futures returning `Result<T, E>`! However, to prevent such mess, the two types are NOT allowed
/// as of now. It may be lifted later when many unstable `try_*` methods/functions are stabilized.
///
/// If the standard library add more types implementing [`Try`](std::ops::Try) or [`Residual`](std::ops::Residual),
/// this macro will NOT be aware of it. You can only be waiting till this crate is updated, or both traits are stabilized.
///
/// # DISCLAIMER
/// This macro does NOT use nightly or beta channel. It is usable on stable release.
///
/// # Possible differences from other implementations
///
/// * `try_join_cyclic!` returns an instance of an anonymous type implemented [`Future`](std::future::Future)
/// instead of requiring it to be inside an `async`. You will be warned if you neither
/// `.await`, [`poll`](std::future::Future::poll), nor return it.
///
/// * input futures are required to implement [`IntoFuture`](std::future::IntoFuture), and their outputs can be more than just
/// [`Result`] (see the first section above for the supported types).
///
/// * the returned future (generally) has smaller size and is (generally) faster.
///
/// * the returned future is [`Unpin`] if all of the input futures are [`Unpin`].
///
/// # Examples
/// ```
/// # futures::executor::block_on(async {
/// use anony::try_join_cyclic;
///
/// let a = async { Some(1) };
/// let b = async { Some(2) };
/// let c = async { Some(3) };
/// assert_eq!(try_join_cyclic!(a, b, c).await, Some((1, 2, 3)));
///
/// let a = async { Ok(4) };
/// let b = async { Err::<(), _>("5") };
/// assert_eq!(try_join_cyclic!(a, b).await, Err("5"));
///
/// let a = async { Some("6") };
/// let b = async { None::<&str> };
/// let c = async { Some("7") };
/// assert_eq!(try_join_cyclic!(a, b, c).await, None);
/// # });
/// ```
///
/// If you want to run a future (or more) while doing something else, this macro is a help! Note that you must put the
/// "something else" after every other futures you want to run:
///
/// ```rust
/// # use std::error::Error;
/// # #[tokio::main]
/// # async fn main() -> Result<(), Box<dyn Error>> {
/// use anony::try_join_cyclic;
/// use tokio::time::sleep;
/// use std::time::Duration;
///
/// async fn read_db() -> Result<String, Box<dyn Error>> {
///     sleep(Duration::from_secs(1)).await;
///     Ok("My secret".into())
/// }
///
/// let (secret_value, _) = try_join_cyclic!(read_db(), async {
///     // Your other tasks go here, maybe asynchronous or just blocking...
///     let a = 1;
///     let b = 2;
///     assert_eq!(a + b, 3);
///     Ok(())
/// }).await?;
///
/// assert_eq!(secret_value, "My secret");
/// # Ok(())
/// # }
/// ```
#[proc_macro]
#[cfg(feature = "future")]
#[cfg_attr(docsrs, doc(cfg(feature = "future")))]
pub fn try_join_cyclic(token_stream: pm::TokenStream) -> pm::TokenStream {
    join::imp(token_stream, true, true)
        .unwrap_or_else(|e| e.into_compile_error())
        .into()
}