1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// "ami" - Aldaron's Memory Interface
//
// Copyright Douglas P. Lau 2017.
// Copyright Jeron A. Lau 2017 - 2018.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// https://www.boost.org/LICENSE_1_0.txt)

use std::fmt;
use std::ops;

/// 3-dimensional vector
#[derive(Clone, Copy, PartialEq)]
pub struct Vec3 {
	/// X coordinate
	pub x: f32,
	/// Y coordinate
	pub y: f32,
	/// Z coordinate
	pub z: f32,
}

impl fmt::Debug for Vec3 {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		write!(f, "({:?},{:?},{:?})", self.x, self.y, self.z)
	}
}

impl ops::Add for Vec3 {
	type Output = Vec3;

	fn add(self, other: Self) -> Self::Output {
		Vec3::new(self.x + other.x, self.y + other.y, self.z + other.z)
	}
}

impl ops::Add<f32> for Vec3 {
	type Output = Vec3;

	fn add(self, other: f32) -> Self::Output {
		Vec3::new(self.x + other, self.y + other, self.z + other)
	}
}

impl ops::AddAssign for Vec3 {
	fn add_assign(&mut self, other: Vec3) {
		self.x += other.x;
		self.y += other.y;
		self.z += other.z;
	}
}

impl ops::Sub for Vec3 {
	type Output = Vec3;

	fn sub(self, other: Self) -> Self::Output {
		Vec3::new(self.x - other.x, self.y - other.y, self.z - other.z)
	}
}

impl ops::Sub<f32> for Vec3 {
	type Output = Vec3;

	fn sub(self, other: f32) -> Self::Output {
		Vec3::new(self.x - other, self.y - other, self.z - other)
	}
}

impl ops::SubAssign for Vec3 {
	fn sub_assign(&mut self, other: Vec3) {
		self.x -= other.x;
		self.y -= other.y;
		self.z -= other.z;
	}
}

impl ops::Mul<f32> for Vec3 {
	type Output = Vec3;

	fn mul(self, s: f32) -> Self::Output {
		Vec3::new(self.x * s, self.y * s, self.z * s)
	}
}

/*impl<T, U> ops::Mul for Vec3<T> where f64: convert::From<T> {
	type Output = T;

	/// Calculate the cross product of two Vec2
	fn mul(self, other: Self) -> T {
		self.x * other.y - self.y * other.x
	}
}*/

impl ops::Div<f32> for Vec3 {
	type Output = Vec3;

	fn div(self, s: f32) -> Vec3 {
		Vec3::new(self.x / s, self.y / s, self.z / s)
	}
}

impl ops::Neg for Vec3 {
	type Output = Vec3;

	fn neg(self) -> Vec3 {
		Vec3::new(-self.x, -self.y, -self.z)
	}
}

impl Vec3 {
	/// Create a new Vec3
	pub fn new(x: f32, y: f32, z: f32) -> Vec3 {
		Vec3 { x, y, z }
	}

	/// Get the magnitude of a Vec3
	pub fn mag(self) -> f32 {
		(self.x).hypot(self.y).hypot(self.z)
	}

	/// Multiply matrix onto Vec3 (as directional vector)
	pub fn transform_dir(self, rhs: ::Mat4) -> Self {
		let x = rhs.0[0]*self.x + rhs.0[4]*self.y + rhs.0[8]*self.z;
		let y = rhs.0[1]*self.x + rhs.0[5]*self.y + rhs.0[9]*self.z;
		let z = rhs.0[2]*self.x + rhs.0[6]*self.y + rhs.0[10]*self.z;

		Self::new(x, y, z)
	}

	/// Create a zero Vec3
	pub fn zero() -> Self {
		Vec3::new(0.0, 0.0, 0.0)
	}

	/// Find the midpoint between two Vec3
	pub fn midpoint(self, other: Self) -> Self {
		let x = (self.x + other.x) / 2.0;
		let y = (self.y + other.y) / 2.0;
		let z = (self.z + other.z) / 2.0;
		Vec3::new(x, y, z)
	}

	/// Calculate the distance squared between two Vec3
	pub fn dist_sq(self, other: Self) -> f32 {
		let dx = other.x - self.x;
		let dy = other.y - self.y;
		let dz = other.z - self.z;
		dx * dx + dy * dy + dz * dz
	}

	/// The recipricol (inverse) of the vector.
	pub fn recip(self) -> Self {
		Vec3::new(1.0 / self.x, 1.0 / self.y, 1.0 / self.z)
	}

	/// Calculate the dot product of two `Vec3`s
	pub fn dot(&self, other: Vec3) -> f32 {
		self.x * other.x + self.y * other.y + self.z * other.z
	}

	/// Normalize a Vec3
	pub fn normalize(self) -> Self {
		let m = self.mag();
		if m > 0.0 {
			self / m
		} else {
			Vec3::zero()
		}
	}

	/// Calculate angle between 2 Vec3's
	pub fn angle(&self, other: Vec3) -> f32 {
		let mag1 = (self.x as f64)
			.hypot(self.y as f64)
			.hypot(self.z as f64);
		let mag2 = (other.x as f64)
			.hypot(other.y as f64)
			.hypot(other.z as f64);
		let dot = ((self.x as f64) * (other.x as f64))
			+ ((self.y as f64) * (other.y as f64))
			+ ((self.z as f64) * (other.z as f64));

		(dot / (mag1 * mag2)).acos() as f32
	}
}