1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
extern crate rand;
extern crate sha3;

use rand::{CryptoRng, RngCore};

use crate::constants::{MODULUS, FIELD_ELEMENT_SIZE};
use crate::types::{BigNum, DoubleBigNum};
use amcl::rand::RAND;

use sha3::digest::{ExtendableOutput, Input, XofReader};
use sha3::Shake256;

/// Hash message and return output of size equal to curve modulus. Uses SHAKE to hash the message.
pub fn hash_msg(msg: &[u8]) -> [u8; FIELD_ELEMENT_SIZE] {
    let mut hasher = Shake256::default();
    hasher.input(&msg);
    let mut h: [u8; FIELD_ELEMENT_SIZE] = [0; FIELD_ELEMENT_SIZE];
    hasher.xof_result().read(&mut h);
    h
}

pub fn get_seeded_rng_with_rng<R: RngCore + CryptoRng>(entropy_size: usize, rng: &mut R) -> RAND {
    // initialise from at least 128 byte string of raw random entropy
    let mut entropy = vec![0; entropy_size];
    rng.fill_bytes(&mut entropy.as_mut_slice());
    get_rand(entropy_size, entropy.as_slice())
}

pub fn get_seeded_rng(entropy_size: usize) -> RAND {
    let mut entropy = vec![0; entropy_size];
    let mut rng = rand::thread_rng();
    rng.fill_bytes(&mut entropy.as_mut_slice());
    get_rand(entropy_size, entropy.as_slice())
}

fn get_rand(entropy_size: usize, entropy: &[u8]) -> RAND {
    let mut r = RAND::new();
    r.clean();
    r.seed(entropy_size, &entropy);
    r
}

/// Perform Barrett reduction given the params computed from `barrett_reduction_params`. Algorithm 14.42 from Handbook of Applied Cryptography
pub fn barrett_reduction(
    x: &DoubleBigNum,
    modulus: &BigNum,
    k: usize,
    u: &BigNum,
    v: &BigNum,
) -> BigNum {
    // q1 = floor(x / 2^{k-1})
    let mut q1 = x.clone();
    q1.shr(k - 1);
    // Above right shift will convert q from DBIG to BIG
    let q1 = BigNum::new_dcopy(&q1);

    let q2 = BigNum::mul(&q1, &u);

    // q3 = floor(q2 / 2^{k+1})
    let mut q3 = q2.clone();
    q3.shr(k + 1);
    let q3 = BigNum::new_dcopy(&q3);

    // r1 = x % 2^{k+1}
    let mut r1 = x.clone();
    r1.mod2m(k + 1);
    let r1 = BigNum::new_dcopy(&r1);

    // r2 = (q3 * modulus) % 2^{k+1}
    let mut r2 = BigNum::mul(&q3, modulus);
    r2.mod2m(k + 1);
    let r2 = BigNum::new_dcopy(&r2);

    // if r1 > r2, r = r1 - r2 else r = r1 - r2 + v
    // Since negative numbers are not supported, use r2 - r1. This holds since r = r1 - r2 + v = v - (r2 - r1)
    let diff = BigNum::comp(&r1, &r2);
    //println!("diff={}", &diff);
    let mut r = if diff < 0 {
        let m = r2.minus(&r1);
        v.minus(&m)
    } else {
        r1.minus(&r2)
    };
    r.norm();

    // while r >= modulus, r = r - modulus
    while BigNum::comp(&r, modulus) >= 0 {
        r = BigNum::minus(&r, modulus);
        r.norm();
    }
    r
}

// Reducing BigNum for comparison with `rmod`
fn __barrett_reduction__(x: &BigNum, modulus: &BigNum, k: usize, u: &BigNum, v: &BigNum) -> BigNum {
    // q1 = floor(x / 2^{k-1})
    let mut q1 = x.clone();
    q1.shr(k - 1);

    let q2 = BigNum::mul(&q1, &u);

    // q3 = floor(q2 / 2^{k+1})
    let mut q3 = q2.clone();
    q3.shr(k + 1);
    let q3 = BigNum::new_dcopy(&q3);

    // r1 = x % 2^{k+1}
    let mut r1 = x.clone();
    r1.mod2m(k + 1);

    // r2 = (q3 * modulus) % 2^{k+1}
    let mut r2 = BigNum::mul(&q3, modulus);
    r2.mod2m(k + 1);
    let r2 = BigNum::new_dcopy(&r2);

    // if r1 > r2, r = r1 - r2 else r = r1 - r2 + v
    // Since negative numbers are not supported, use r2 - r1. This holds since r = r1 - r2 + v = v - (r2 - r1)
    let diff = BigNum::comp(&r1, &r2);
    //println!("diff={}", &diff);
    let mut r = if diff < 0 {
        let m = r2.minus(&r1);
        v.minus(&m)
    } else {
        r1.minus(&r2)
    };
    r.norm();

    // while r >= modulus, r = r - modulus
    while BigNum::comp(&r, modulus) >= 0 {
        r = BigNum::minus(&r, modulus);
        r.norm();
    }
    r
}

/// For a modulus returns
/// k = number of bits in modulus
/// u = floor(2^2k / modulus)
/// v = 2^(k+1)
pub fn barrett_reduction_params(modulus: &BigNum) -> (usize, BigNum, BigNum) {
    let k = modulus.nbits();

    // u = floor(2^2k/MODULUS)
    let mut u = DoubleBigNum::new();
    u.w[0] = 1;
    // `u.shl(2*k)` crashes, so perform shl(k) twice
    u.shl(k);
    u.shl(k);
    // div returns floored value
    let u = u.div(&MODULUS);

    // v = 2^(k+1)
    let mut v = BigNum::new_int(1isize);
    v.shl(k + 1);

    (k, u, v)
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::constants;
    use crate::field_elem::FieldElement;
    use crate::group_elem::GroupElement;
    use crate::group_elem_g1::G1;
    use crate::utils::rand::Rng;
    use crate::ECCurve::big::BIG;
    use crate::ECCurve::ecp::ECP;
    use crate::ECCurve::fp::FP;
    use std::time::Instant;

    #[test]
    fn timing_fp_big() {
        // TODO: Compare adding raw BIGs and FieldElement to check the overhead of the abstraction
        let count = 100;
        let elems: Vec<_> = (0..count).map(|_| FieldElement::random()).collect();
        let bigs: Vec<_> = elems.iter().map(|f| f.to_bignum()).collect();
        let fs: Vec<_> = bigs.iter().map(|b| FP::new_big(&b)).collect();
        let mut res_mul = BIG::new_int(1 as isize);
        let mut start = Instant::now();
        for b in &bigs {
            res_mul = BigNum::modmul(&res_mul, &b, &MODULUS);
        }
        println!(
            "Multiplication time for {} BIGs = {:?}",
            count,
            start.elapsed()
        );

        let mut res_mul = FP::new_int(1 as isize);
        start = Instant::now();
        for f in &fs {
            res_mul.mul(&f);
        }
        println!(
            "Multiplication time for {} FPs = {:?}",
            count,
            start.elapsed()
        );

        let res_mul = FieldElement::one();
        start = Instant::now();
        for e in &elems {
            res_mul.multiply(&e);
        }
        println!(
            "Multiplication time for {} FieldElements = {:?}",
            count,
            start.elapsed()
        );

        let mut inverses_b: Vec<BigNum> = vec![];
        let mut inverses_f: Vec<FP> = vec![];

        start = Instant::now();
        for b in &bigs {
            let mut i = b.clone();
            i.invmodp(&MODULUS);
            inverses_b.push(i);
        }
        println!("Inverse time for {} BIGs = {:?}", count, start.elapsed());
        for i in 0..count {
            let r = BigNum::modmul(&inverses_b[i], &bigs[i], &MODULUS);
            assert_eq!(BigNum::comp(&r, &BigNum::new_int(1 as isize)), 0);
        }

        start = Instant::now();
        for f in &fs {
            let mut i = f.clone();
            i.inverse();
            inverses_f.push(i);
        }
        println!("Inverse time for {} FPs = {:?}", count, start.elapsed());
        for i in 0..count {
            let mut c = inverses_f[i].clone();
            c.mul(&fs[i]);
            assert!(c.equals(&FP::new_int(1 as isize)));
        }

        // Fixme: add in FP crashes while adding 100 elems
        let c = 50;
        start = Instant::now();
        let mut r = bigs[0];
        for i in 0..c {
            r.add(&bigs[i]);
            r.rmod(&MODULUS);
        }
        println!("Addition time for {} BIGs = {:?}", c, start.elapsed());

        let mut r1 = fs[0];
        start = Instant::now();
        for i in 0..c {
            r1.add(&fs[i]);
        }
        println!("Addition time for {} FPs = {:?}", c, start.elapsed());
    }

    #[test]
    fn timing_ecp() {
        let count = 100;
        let mut a = vec![];
        let mut b = vec![];
        let mut g = Vec::<ECP>::new();
        let mut h = Vec::<ECP>::new();

        let mut r1 = vec![];
        let mut r2 = vec![];

        for _ in 0..count {
            a.push(FieldElement::random().to_bignum());
            b.push(FieldElement::random().to_bignum());
            let mut x: G1 = GroupElement::random();
            g.push(x.to_ecp());
            x = GroupElement::random();
            h.push(x.to_ecp());
        }

        let mut start = Instant::now();
        for i in 0..count {
            r1.push(g[i].mul2(&a[i], &h[i], &b[i]));
        }
        println!("mul2 time for {} = {:?}", count, start.elapsed());

        start = Instant::now();
        for i in 0..count {
            let mut _1 = g[i].mul(&a[i]);
            _1.add(&h[i].mul(&b[i]));
            r2.push(_1);
        }
        println!("mul+add time for {} = {:?}", count, start.elapsed());

        for i in 0..count {
            assert!(r1[i].equals(&mut r2[i]))
        }
    }

    #[test]
    fn timing_barrett_reduction() {
        //let (k, u, v) = barrett_reduction_params(&MODULUS);
        let (k, u, v) = (
            *constants::BARRETT_REDC_K,
            *constants::BARRETT_REDC_U,
            *constants::BARRETT_REDC_V,
        );
        let mut xs = vec![];
        let mut reduced1 = vec![];
        let mut reduced2 = vec![];
        let mut rng = rand::thread_rng();
        let count = 1000;
        for _ in 0..count {
            let a: u32 = rng.gen();
            let s = BigNum::new_int(a as isize);
            let _x = MODULUS.minus(&s);
            xs.push(BigNum::mul(&_x, &_x));
        }

        let mut start = Instant::now();
        for x in &xs {
            let r = barrett_reduction(&x, &MODULUS, k, &u, &v);
            reduced1.push(r);
        }
        println!("Barrett time = {:?}", start.elapsed());

        start = Instant::now();
        for x in &xs {
            let mut y = x.clone();
            let z = y.dmod(&MODULUS);
            reduced2.push(z);
        }
        println!("Normal time = {:?}", start.elapsed());

        for i in 0..count {
            assert_eq!(BigNum::comp(&reduced1[i], &reduced2[i]), 0);
        }
    }

    #[test]
    fn timing_rmod_with_barrett_reduction() {
        let (k, u, v) = (
            *constants::BARRETT_REDC_K,
            *constants::BARRETT_REDC_U,
            *constants::BARRETT_REDC_V,
        );
        let count = 100;
        let elems: Vec<_> = (0..count).map(|_| FieldElement::random()).collect();
        let bigs: Vec<_> = elems.iter().map(|f| f.to_bignum()).collect();

        let mut sum = bigs[0].clone();
        let mut start = Instant::now();
        for i in 0..count {
            sum = BigNum::plus(&sum, &bigs[i]);
            sum.rmod(&MODULUS)
        }
        println!("rmod time = {:?}", start.elapsed());

        let mut sum_b = bigs[0].clone();
        start = Instant::now();
        for i in 0..count {
            sum_b = BigNum::plus(&sum_b, &bigs[i]);
            sum_b = __barrett_reduction__(&sum_b, &MODULUS, k, &u, &v)
        }
        println!("Barrett time = {:?}", start.elapsed());

        assert_eq!(BigNum::comp(&sum, &sum_b), 0)
    }
}