1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
use std::cmp::*;
use std::iter::{FromIterator, repeat};
use smallvec::SmallVec;


#[derive(Debug)]
pub enum ShapeError{
	/// Cannot convert a NodeShape into a Data Shape when some higher dimensions are still Unknown after propagating constraints from all prior operations.
	IncompleteNodeShape,
	
	/// Cannot merge shapes which have a fixed but different total number of elements.
	MergeIncompatibleFlatSize,
	
	/// Cannot merge shapes which have a different number of elements
	MergeIncompatibleChannelDimension,
	
	/// Cant merge shapes which have different numbers of higher dimensions, unless one has no higher dimensions
	MergeIncompatibleRank,
	
	
	MergeIncompatibleHigherDimension,
	
	
	UnderDeterminedFlatSize,
}


use self::Dimension::*;

#[derive(Clone, Debug, PartialEq)]
pub enum Dimension {
	Unknown,
	Fixed(usize),
	/// Inclusive range of possible sizes for a given dimension
	Range{upper: usize, lower: usize},
}

impl Dimension {
	fn multiply (&self, other: &Dimension) -> Dimension{
		match (self, other) {
			(&Unknown, _) | (_, &Unknown) => Unknown,
			(&Fixed(x), &Fixed(y)) => Fixed(x*y),
			(&Fixed(x), &Range{upper, lower}) | (&Range{upper, lower}, &Fixed(x)) => Range{upper: upper*x, lower: lower*x},
			(&Range{upper: upper1, lower: lower1}, &Range{upper: upper2, lower: lower2}) => Range{upper: upper1*upper2, lower: lower1*lower2},
		}
	}

	fn merge(&self, other: &Dimension) -> Result<Dimension, ShapeError>{
		match (self, other) {
			(&Unknown, x) | (x, &Unknown) => Ok(x.clone()),	
			(&Fixed(x), &Fixed(y)) => if x == y {Ok(Fixed(x))} else {Err(ShapeError::MergeIncompatibleHigherDimension)},
			(&Fixed(v), &Range{upper, lower}) | (&Range{upper, lower}, &Fixed(v)) => if v >= lower && v <= upper {Ok(Fixed(v))} else {Err(ShapeError::MergeIncompatibleHigherDimension)},
			(&Range{upper: upper1, lower: lower1}, &Range{upper: upper2, lower: lower2}) =>  {
				let upper = min(upper1, upper2);
				let lower = max(lower1, lower2);
				if lower == upper {
					Ok(Fixed(lower))
				} else if lower < upper {
					Ok(Range{upper: upper, lower: lower})
				} else {
					Err(ShapeError::MergeIncompatibleHigherDimension)
				}
			},	
		}
		
	}

}

#[derive(Clone, PartialEq, Debug)]
pub struct DataShape{
	
	pub channels: usize,
	
	pub spatial_dimensions: SmallVec<[usize;4]>,
	/// The number of training examples being processed in parallel
	pub n: usize,
}

impl DataShape{

	pub fn spatial_size_single(&self) -> usize {
		self.spatial_dimensions.iter().fold(1, |prev, &item| prev*item)
	}
	
	pub fn flat_size_single(&self) -> usize {
		self.spatial_dimensions.iter().fold(self.channels, |prev, &item| prev*item)
	}
	
	pub fn flat_size_all(&self) -> usize {
		self.spatial_dimensions.iter().fold(self.channels * self.n, |prev, &item| prev*item)
	}
	
	/// Rank excluding 'n'
	pub fn rank(&self) -> usize {
		self.spatial_dimensions.len() + 1
	}
	
	pub fn new(channels: usize, higher_dims: &[usize], n: usize) -> DataShape{
		DataShape{
			channels: channels, 
			spatial_dimensions: SmallVec::from_iter(higher_dims.iter().cloned()), 
			n: n
		}
	}
	
	pub fn new_flat(size: usize, n: usize) -> DataShape{
		DataShape{
			channels: size, 
			spatial_dimensions: SmallVec::new(), 
			n: n
		}
	}
	
	pub fn to_node_shape(&self) -> NodeShape {
		NodeShape::new(self.channels, &self.spatial_dimensions)
	}
}


#[derive(Clone, PartialEq)]
pub struct NodeShape{
	pub channels: usize,
	pub spatial_dimensions: SmallVec<[Dimension;4]>, // None indicates Runtime Determined, Range indicates acceptible range for fixed size
} // depth, dimensions

impl NodeShape{
	
	pub fn new(channels: usize, higher_dims: &[usize]) -> NodeShape{
		NodeShape{
			channels: channels, 
			spatial_dimensions: higher_dims.iter().map(|&x| Dimension::Fixed(x)).collect(), 
		}
	}
	
	/// Creates a new NodeShape, with higher timensions to be determined at runtime
	pub fn new_flex(channels: usize, num_higher_dims: usize) -> NodeShape{
		NodeShape{
			channels: channels, 
			spatial_dimensions: SmallVec::from_iter(repeat(Dimension::Unknown).take(num_higher_dims)),
		}
	}
	
	pub fn new_flat(size: usize) -> NodeShape{
		NodeShape{
			channels: size, 
			spatial_dimensions: SmallVec::new(), 
		}
	}
	
	
	/// Should be called and only called by operations prior to propagating shape constraints
	/// The higher dimension ranges are collapsed to the lower bound, and all None entries are replaced with the range 0:0
	pub fn collapse_ranges_to_minimum(&mut self) -> Result<(), ShapeError>{
		
		for i in 0.. self.spatial_dimensions.len(){
			//self.spatial_dimensions [i] =
			match &self.spatial_dimensions[i] {
				&Unknown => return Err(ShapeError::IncompleteNodeShape),
				&Fixed(_) => {},
				&Range{lower, ..} => self.spatial_dimensions[i] = Fixed(lower),

				// None => return Err(ShapeError::IncompleteNodeShape),
				// Some(ref range) => InclusiveRange{upper: range.lower, lower: range.lower},
			};
			
		}
		Ok(())
	}
	
	pub fn flat_size(&self) -> Dimension {
		self.spatial_dimensions.iter().fold(Fixed(self.channels), |prev, item| prev.multiply(item))
	}
	
	pub fn force_flat_size(&self) -> Result<usize, ShapeError>{
		let mut size = self.channels;

		for dim in self.spatial_dimensions.iter() {
			match dim {
				&Fixed(v) => size *= v,
				&Range{upper, lower} if upper == lower => size *= lower,
				_ => return Err(ShapeError::UnderDeterminedFlatSize),
			}
		}

		Ok(size)
	}
	
	/// If range upper != lower, lowe will be used.
	pub fn to_data_shape(&self, n: usize) -> Result<DataShape, ShapeError> {

		let mut dims = SmallVec::new();

		for dim in self.spatial_dimensions.iter() {
			match dim {
				 &Fixed(v) => dims.push(v),
				_ => return Err(ShapeError::IncompleteNodeShape),
			}
		}

		Ok(
			DataShape{
			channels: self.channels,
			spatial_dimensions: dims,
			n: n,
		})

	}
	
	pub fn is_fixed(&self) -> bool {
		self.spatial_dimensions.iter().all(|x|{
			match x {
				&Fixed(_) => true,
				_ => false,
			}
		})
	}
	
	pub fn rank(&self) -> usize {
		self.spatial_dimensions.len() + 1
	}
	
	pub fn merge(&self, other: &NodeShape) -> Result<NodeShape, ShapeError>{
		
		if self.is_fixed() && other.is_fixed() {
			self.merge_fixed(other)	
		} else if self.channels != other.channels {
			Err(ShapeError::MergeIncompatibleChannelDimension)
		} else if self.rank() != other.rank() {
			Err(ShapeError::MergeIncompatibleRank)
		} else {
			
			let mut new = NodeShape::new_flat(self.channels);
			
			for i in 0..self.spatial_dimensions.len(){
				match self.spatial_dimensions[i].merge(&other.spatial_dimensions[i]) {
					Err(x) => return Err(x),
					Ok(range) => new.spatial_dimensions.push(range),
				}
				
			}
			
			Ok(new)
			
		}
			
		
	}
	
	#[inline(always)]
	fn merge_fixed(&self, other: &NodeShape) -> Result<NodeShape, ShapeError>{

		debug_assert!(match (self.flat_size(), self.flat_size()){
			(Fixed(x), Fixed(y)) => x == y,
			_ => false,
		});

		if self.rank() == 1 {
			Ok(other.clone())
		} else if other.rank() == 1 {
			Ok(self.clone())
		} else if self.rank() != other.rank() {
			Err(ShapeError::MergeIncompatibleRank)
		} else if self.channels != other.channels {	
			Err(ShapeError::MergeIncompatibleChannelDimension)
		} else {
		
			let mut new = NodeShape::new_flat(self.channels);
			
			for i in 0..self.spatial_dimensions.len(){
				match self.spatial_dimensions[i].merge(&other.spatial_dimensions[i]) {
					Err(x) => return Err(x),
					Ok(range) => new.spatial_dimensions.push(range),
				}
				
			}
			
			Ok(new)
			
		}	
	}
	
	
//	// How can we end up calling merge not fixed? maybe some operation that can broadcast its channels accross higher dimensions?
//	fn merge_not_fixed(&self, other: &NodeShape) -> Result<NodeShape, ShapeError>{
//		if self.0 != other.0 {
//			Err("To merge two non-fixed shapes column depth must be the same.")
//		} else if self.1.len() != other.1.len() {
//			Err("To merge two non-fixed shapes the number of dimensions must be the same")
//		} else {
//			Ok(Shape(self.0, vec![None; self.1.len()]))
//		}
//	}
		

}